雄安新区
藻薈淀退耕还淀生态湿地恢复工程一期

环境影响报告书

(征求意见稿)

中国电建集团中南勘测设计研究院有限公司
POWERCHINA ZHONGNAN ENGINEERING CORPORATION LIMITED
2020 年 5 月
目录

概述 ... 1
一 项目由来 ... 1
二 评价工作过程 ... 2
三 项目特点及主要问题 ... 4
四 分析判断相关情况 ... 4
五 主要结论 ... 5

总论 .. 6
1.1 编制依据 ... 6
1.2 环境影响因素识别及评价因子筛选 ... 8
1.3 环境功能区划与评价标准 .. 10
1.4 评价工作等级及评价范围 .. 11
1.5 评价内容及评价重点 .. 13
1.6 评价时段 .. 14
1.7 环境保护目标 ... 14

2 工程概况 ... 17
2.1 拟建项目基本情况 ... 17
2.2 工程内容及规模 ... 17
2.3 工程布置及建筑物 .. 19
2.4 施工组织设计 ... 22
2.5 工程用地 .. 24
2.6 管护方案 .. 25

3 工程分析 ... 26
3.1 产业政策的符合性 ... 26
3.2 与相关上位规划、法规的相符性 .. 26
3.3 与相关环保规划的相符性 .. 30
3.4 与“三线一单”的相符性 .. 35
3.5 工程影响因素分析 ... 36
3.6 施工期主要污染源 ... 39
3.7 营运期主要污染源 ... 42
3.8 工程建设方案环境合理性分析 ... 43

4. 环境现状调查与评价 .. 58
4.1 自然环境概况 ... 58
4.2 环境质量现状调查与评价 .. 65
4.3 相关生态敏感区规划概况 .. 142

5. 环境影响分析 .. 147
5.1 土壤环境影响 ... 147
5.2 水土流失影响 ... 147
5.3 生态环境影响 ... 149
概 述

一 项目由来

2017 年 4 月 1 日，中共中央、国务院决定设立河北雄安新区。设立雄安新区，是以习近平同志为核心的党中央深入推进京津冀协同发展作出的一项重大决策部署，是千年大计、国家大事。《河北雄安新区规划纲要》明确指出坚持将绿色作为新区高质量发展的普遍形态，充分体现生态文明建设要求，将新区打造为绿色生态宜居新城区。2018 年 12 月，国务院印发《关于河北雄安新区总体规划（2018-2035 年）的批复》，提出“建设成为绿色生态宜居新城区、创新驱动发展引领区、协调发展示范区、开放发展先行区，努力打造贯彻落实新发展理念的创新发展示范区”。

2019 年 1 月，经党中央、国务院同意，河北省委、省政府印发《白洋淀生态环境治理和保护规划（2018-2035 年）》，规划明确提出实施退耕还淀，恢复生态水位，扩增淀泊水面，根据湿地生态演替特点，将水位波动过程中新增消落区内稻田和旱地逐步修复为湿地，恢复淀区生态系统完整性。

白洋淀是华北平原最大的淡水湿地生态系统，具有蓄洪滞沥、生态涵养、生产生活和休闲游憩等多元功能，被誉为“华北之肾”，在区域生态安全体系中具有非常重要的地位。白洋淀生态修复是构建雄安新区蓝绿交织、清新明亮、水城共融的生态城市重要基础。为贯彻落实习近平总书记的“建设雄安新区，一定要把白洋淀修复好，保护好”的重要指示，坚决做好白洋淀生态环境治理和保护工作，把雄安建成新发展理念的创新发展示范区和高质量高水平社会主义现代化城市。

藻苲淀位于白洋淀府河老桥以西，属于白洋淀西大门，是白洋淀常年三条有水入淀河流之一府河的入淀区域，淀区面积约 50km²，占白洋淀总面积的 1/7。由于藻苲淀主要入淀河流（萍河、瀑河、漕河、府河）来水水量少、入淀河流水质污染严重、淀区围垦造田及区域生态景观破碎化严重等诸多因素影响，造成藻苲淀区域污染严重、水动力不足、生境退化、物种多样性急剧降低等生态环境问题，使其成为白洋淀生态环境退化严重区域，严重影响白洋淀的生态功能。

为贯彻落实《白洋淀生态环境治理和保护规划（2018—2035 年）》，针对藻苲淀区域水质净化、生态恢复需求，河北省委、省政府提出在藻苲淀统筹实施府河入淀口湿地水质净化工程、藻苲淀退耕还淀生态湿地恢复工程和府河新区段河道综合治理等项目，共同保障淀区生态恢复和淀区国控断面水质达标。其
中，府河入淀口湿地水质净化工程主要功能是净化入淀水质；藻苲淀退耕还淀生态湿地工程主要是通过退耕还淀还湿，恢复淀区水动力条件和湿地生态系统，兼顾淀区自净和水质提升功能；府河新区段河道综合治理工程主要是恢复河道生态和自净功能，保障河床行洪能力，并为湿地工程提供调控配水作用。府河、瀑河、漕河来水经府河河口湿地净化后，大部分作为藻苲淀水源进入藻苲淀，剩余部分进入府河，保证府河河道基本流量。目前府河河口湿地水质净化工程、府河新区段河道综合治理工程已进入施工阶段。

实施藻苲淀退耕还淀，在上游水质有效改善的基础上，进一步控制淀区内源污染负荷、净化上游入淀河流水质、改善水动力条件，保障南刘庄断面水质达标、恢复白洋淀湿地生态功能、再现白洋淀特色湿地景观，对改善白洋淀流域生态环境、实现白洋淀可持续发展具有重要意义。

按照《建设项目环境影响评价分类管理名录》（2018年版），该项目属于河湖整治工程，工程建设涉及白洋淀湿地自然保护区与水产种质资源保护区，应编制环境影响报告书。因此，中国雄安集团生态建设投资有限公司委托中国电建集团中南勘测设计研究院有限公司（以下简称“我公司”）开展该项目环境影响评价。

二 评价工作过程

我司接受委托后成立了项目工作组，根据《环境影响评价技术导则-总纲》（HJ2.1-2016）等相关技术规范的要求，环境影响评价工作分为三个阶段，即调查分析和工作方案制定阶段、分析论证和预测评价阶段、环境影响报告书编制阶段。具体流程见下图所示。
项目组在进行全线踏勘后，全面分析了工程特点与项目区环境现状特征，重点筛选出白洋淀湿地自然保护区与水产种质资源保护区环境敏感区进行重点调查与评价，并委托有资质监测单位对区域的环境质量现状进行监测，同时委托专业调查机构武汉伊美净科技有限公司对评价区生态现状进行了重点调查评价，在此基础上编制环境影响报告书。在环评报告编制期间，建设单位按照国家相关要求积极开展公众参与调查的相关工作。
三 项目特点及主要问题

（1）项目特点

本项目有二个重要特点：一是工程建设涉及白洋淀省级自然保护区与国家级水产种质资源保护区，环境较敏感，但该项目属于水生态系统及地下水保护与修复工程，属于生态环境修复与改善项目；二是工程建设用地处理范围即为工程建设区用地范围，工程建设区用地占地 8100 亩，全部为临时用地，拟采用土地租用方式。占地面积为：水田 1590 亩；旱地 1200 亩；荷塘 4560 亩；其他土地（水塘、围堤等）750 亩，本工程用地范围内无房屋、专项设施等其他实物指标，即所有的工程活动全在工程建设用地范围内，施工设备与交通只是进出场时影响周边居民。因此工程建设对环境的影响主要是工程施工对水生态环境的影响。

（2）关注的主要环境问题

工程环境影响评价重点：分析工程施工对藻荡淀水环境、水生生态等的影响，重点分析对湿地自然保护区与水产种质资源保护区的影响，以及施工方案组织的环境合理性；另外重点分析运营期藻荡淀对水文情势、水生生态等影响，并提出施工期和运行期环境管理及保护措施。

四 分析判断相关情况

（1）产业政策

依据《产业结构调整指导目录（2019 年本）》，本项目属于鼓励类的水生态系统及地下水保护与修复工程），因此符合国家产业政策。

（2）相关环保规划符合性

《白洋淀生态环境治理和保护规划（2018—2035 年）》规划实施入淀河流综合治理、退耕还淀、建设河口湿地。根据规划安排，针对现状府河和白洋淀水质净化需求，河北省委、省政府提出在藻荡区域统筹实施府河河口湿地水质净化工程、府河新区段河道综合治理工程和藻荡淀退耕还淀生态湿地恢复工程等三项重点工程。府河河口湿地水质净化工程主要功能是净化入淀水质；府河河新区段河道综合治理工程主要是恢复河道生态和自净功能，保障河床行洪能力，并为湿地工程提供调控配水作用，藻荡淀退耕还淀生态湿地恢复工程主要是通过退耕还淀还湿，恢复淀区水动力条件和湿地生态系统，兼顾淀区自净和水质提升功能。三项工程有机衔接，相互协同，共同保障入淀前的南刘庄国控断面水质及生态目标达标。
（3）“三线一单”符合性分析

本工程属于改善环境质量的项目，不增加排污，不会触碰环境质量底线，工程建设不消耗外来水资源，也不会触碰资源利用上线，不占用河北省生态保护红线，本工程是实施湿地治理与保护、实现人水和谐的具体实践，不是负面清单项目。

五 主要结论

本工程属于鼓励类的水生态系统及地下水保护与修复工程，符合《河北雄安新区规划纲要》《白洋淀生态环境治理和保护规划（2018—2035年）》要求。工程建设可能的不利环境影响主要表现在施工期，可通过落实本环评报告提出的环境影响减缓措施得到有效控制；工程建设环境效益和社会效益显著。从环保角度分析，工程建设可行。
总论

1.1 编制依据

1.1.1 国家法律、法规、政策

(1) 《中华人民共和国环境保护法》（2015 年 1 月 1 日）；
(2) 《中华人民共和国环境影响评价法》（2018 年 12 月 29 日修订施行）；
(3) 《中华人民共和国水土保持法》（2011 年 3 月 1 日）；
(4) 《中华人民共和国水污染防治法》（2018 年 1 月 1 日修订施行）；
(5) 《中华人民共和国大气污染防治法》（2016 年 1 月 1 日）；
(6) 《中华人民共和国环境噪声污染防治法》（2018 年 12 月 29 日修订施行）；
(7) 《中华人民共和国固体废物污染环境防治法》（2015 年 4 月 24 日）；
(8) 《中华人民共和国水法》（2016 年 7 月修订）；
(9) 《建设项目环境保护管理条例》（2017 年 10 月 1 日修订施行）；
(10) 《生态环境部审批环境影响评价文件的建设项目目录》（2019 年本）；
(11) 《产业结构调整指导目录（2019 年本）》（2019 年修订）；
(12) 《环境影响评价公众参与办法》（2019 年 1 月 1 日施行）；
(13) 《关于划定并严守生态保护红线的若干意见》（2017.2.7）；
(14) 《水污染防治行动计划》（2015 年 4 月 16 日）；
(15) 《土壤污染防治行动计划》（2016 年 5 月 31 日）；
(16) 《大气污染防治行动计划》（2013 年 9 月 10 日）；
(17) 《关于进一步加强水生生物资源保护严格环境影响评价管理的通知》（环发[2013]86 号）；
(18) 《湿地保护管理规定》国家林业局令第 32 号，2018.1.1 修订实施；
(19) 《关于划定并严守生态保护红线的若干意见》，2017.2.7；
(20) 《水利建设项目（河湖整治与防洪除涝工程）环境影响评价文件审批原则（试行）》（环办环评[2018]2 号）。

1.1.2 地方法规、政策、规划

(1) 《河北省生态环境厅审批环境影响评价文件的建设项目目录》（2019 年本）；
(2) 《河北雄安新区规划纲要》；
(3) 《中共河北省委河北省人民政府关于〈白洋淀生态环境治理和保护规划〉》。
(4) 河北省生态环境厅印发《关于印发<河北省环评审批改革备案试点工作方案>(试行)>的通知》(冀环评函〔2018〕661号);

(5) 2019年5月，雄安新区生态环境局印发《关于雄安新区2019年重点建设项目开展环评审批工作的情况说明》，对新区2019年59个重点建设项目的环评文件类型均作出了规定；

(6) 2020年1月8日，河北雄安新区重大建设项目办公室印发会议纪要〔2019〕34号，会议议定“《白洋淀生态环境治理和保护规划（2018-2035）》未涉及白洋淀自然保护区的规划定位，且项目不涉及白洋淀生态功能区。”

1.1.3 相关技术规范

(1) 《环境影响评价技术导则 总纲》（HJ2.1-2016）；
(2) 《环境影响评价技术导则 大气环境》（HJ2.2-2018）；
(3) 《环境影响评价技术导则 地面水环境》（HJ2.1-2018）；
(4) 《环境影响评价技术导则 声环境》（HJ2.4-2009）；
(5) 《环境影响评价技术导则 生态影响》（HJ19-2011）；
(6) 《环境影响评价技术导则 地下水环境》（HJ610-2016）；
(7) 《生产建设项目水土流失防治标准》（GB50434-2018）。

1.1.4 其它资料

(1) 《中共河北省委河北省人民政府关于〈白洋淀生态环境治理和保护规划〉实施意见》（2018年12月）；
(2) 《河北省生态保护红线》（冀政字〔2018〕23号）；
(3) 《雄安新区及白洋淀流域水环境综合整治工作方案》（冀政字〔2017〕18号）；
(4) 《河北雄安新区总体规划（2018-2035年）》（国函〔2018〕159号）；
(5) 《河北省“一湖一策”实施方案（白洋淀）》；
(6) 《保定市水污染防治专项2017年度实施方案》；
(7) 《保定市水体达标方案(2017-2020)》(保政办函〔2018〕93号)；
(8) 《白洋淀生态环境保护2015年度方案》；
(9) 《白洋淀流域治理实施方案（2018-2020年）》（冀政字〔2018〕38号）；
(10) 《关于对唐河污水库污染治理与生态修复一期工程有关工作的复函》（冀
环评函【2018】547号）（省生态环境厅同意不再编制《生态影响专题报告》并单独审查）：“

（11）《白洋淀生态环境治理和保护规划（2018-2035年）》。

1.2 环境影响因素识别及评价因子筛选

1.2.1 环境影响因素识别

根据本项目的工程规模、建设与运行特征、评价区的环境现状特征，本工程的对环境的负面影响主要集中于施工期，且影响程度相对较小，营运期以正面影响为主。

本评价将按工程施工、营运两个方面进行分析，以工程活动的规模或强度、影响时间的持续性、影响受体敏感性及影响范围作为判别依据，分析确定每项活动对各环境因子的影响程度，由此确定各环境因子的重要性。拟采用矩阵分析法对主要影响源和影响因子的识别与筛选，详见表1.2-1。

表1.2-1 工程环境影响识别矩阵

<table>
<thead>
<tr>
<th>影响分类</th>
<th>自然环境</th>
<th>社会环境</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>生态敏感区</td>
<td>陆生生态</td>
</tr>
<tr>
<td>土石方工程</td>
<td>-▲</td>
<td>-▲</td>
</tr>
<tr>
<td>底泥清理</td>
<td>-★</td>
<td>-▲</td>
</tr>
<tr>
<td>水道疏通</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>围堤围埝拆除</td>
<td>-○</td>
<td>-▲</td>
</tr>
<tr>
<td>存量污水处理</td>
<td>-★</td>
<td>-▲</td>
</tr>
<tr>
<td>表层土壤生态治理</td>
<td>+▲</td>
<td>+●</td>
</tr>
<tr>
<td>生境营造</td>
<td>-○</td>
<td>+○</td>
</tr>
<tr>
<td>动植物恢复</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>机械保养</td>
<td>-★</td>
<td>-▲</td>
</tr>
<tr>
<td>施工人员办公生活</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>工程占地</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>水系疏导工程</td>
<td>+●</td>
<td>±▲</td>
</tr>
</tbody>
</table>
1.2.2 评价因子筛选

根据本工程环境影响特点，经筛选和识别，各评价要素的环境影响评价因子见表 1.2-2。

<table>
<thead>
<tr>
<th>评价项目</th>
<th>现状评价</th>
<th>施工期影响分析</th>
<th>运行期影响分析</th>
</tr>
</thead>
<tbody>
<tr>
<td>地表水环境</td>
<td>施工区水域监测断面监测指标包括:《地表水环境质量标准》（GB3838-2002）中规定的 24 项基本指标，其余点位地表水监测指标包括 pH、溶解氧、高锰酸钾指数、化学需氧量、五日生化需氧量、总磷（湖、库，以 P 计）、总氮、氨氮、电导率、氧化还原电位、悬浮物、叶绿素 a、透明度等 13 个水质指标，重点是 COD、NH₃-N、TP</td>
<td>pH、SS、石油类、COD、氨氮</td>
<td>水文情势（水流、径流、水位等）、水质（COD、NH₃-N 与 TP）</td>
</tr>
<tr>
<td>大气环境</td>
<td>TSP、PM₂.₅、NO₂、NH₃、H₂S</td>
<td>TSP、NO₂、NH₃、H₂S</td>
<td>/</td>
</tr>
<tr>
<td>声环境</td>
<td>连续等效声级 Leq（A）</td>
<td>连续等效声级 Leq（A）</td>
<td>连续等效声级 Leq（A）</td>
</tr>
<tr>
<td>底泥</td>
<td>底泥厚度、TN、TP、TOC、pH、III 类水条件下释放通量实验（TN、TP、COD）、镉、汞、砷、铅、铬、铜、镍、锌、六六六总量、滴滴涕总量、苯并[a]芘共 19 个指标</td>
<td>TN、TP、COD、Od</td>
<td>-</td>
</tr>
<tr>
<td>生态影响</td>
<td>动植物、鸟类资源、鱼类资源、水生生物资源</td>
<td>动植物、鸟类资源、鱼类资源、水生生物资源</td>
<td>生物多样性</td>
</tr>
<tr>
<td>环境风险</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

注：●影响较大 ▲影响一般 ○影响轻微 ★影响十分有限但较敏感 +有利影响 -不利影响
1.3 环境功能区划与评价标准

1.3.1 环境功能定位

依据《白洋淀生态环境治理和保护规划（2018-2035 年）》，白洋淀是大清河流域缓洪滞沥的大型平原洼淀，是华北平原最大的淡水湿地生态系统，具有蓄洪滞沥、生态涵养、生产生活与休闲游憩等多元功能。

1.3.2 评价标准

a) 地表水

根据雄安新区白洋淀现状水质监测断面布设情况，项目区域内涉及 2 个国控断面（安州断面、南刘庄断面）；1 个省控断面（鸪丁淀断面）长期处于干涸状态。

根据《白洋淀生态环境治理和保护规划（2018-2035 年）》及《中共河北省委河北省政府关于〈白洋淀生态环境治理和保护规划〉实施意见》，到 2020 年，淀区现有考核断面水质基本达到地表水环境质量 III~IV 类标准，府河、孝义河、潴龙河、唐河、钹河、瀑河、萍河、白沟河等 8 条河流水质考核断面达到考核要求；到 2022 年，淀区考核断面水质达到地表水环境质量 III~IV 类标准；到 2035 年，府河、孝义河等 8 条河流水质稳定在地表水环境质量 IV 类标准，淀区水质达到地表水环境质量 III~IV 类标准。

据此分析确定，评价区内地表水环境执行《地表水环境质量标准》(GB3838-2002) IV 类标准。

b) 空气环境

项目所在区环境空气质量类别属于二类区，评价区内环境空气执行《环境空气质量标准》(GB3095-2012)二级浓度限值。

c) 声环境

评价区内村落等居住区声环境执行《声环境质量标准》(GB3096-2008)2 类标准，交通干线两侧红线外 35m 范围内执行《声环境质量标准》(GB3096-2008)表 1 中 4a 类标准。

d) 土壤环境

评价区内土壤环境执行《土壤环境质量 农用地土壤污染风险管控标准（试行）》(GB15618-2018)的风险筛选值。
1.3.3 污染物排放标准

(1) 废（污）水排放
湿地自然保护区核心区与缓冲区禁止排放，其它区废（污）水排放执行《地表水环境质量标准》IV类标准（即不降低白洋淀内现状水质），生活污水执行《污水综合排放标准》（GB8978-1996）一级排放标准。

(2) 废气排放
施工期扬尘执行河北省地方标准《施工场地扬尘排放标准》(DB13/2934-2019)，控制项目PM_{10}，监测点浓度限值80μg/m³，达标判定依据2次/天。其它废气执行《大气污染物综合排放标准》（GB16297-1996）表2中的无组织排放监控浓度限值标准。

(3) 噪声排放
施工期噪声排放执行《建筑施工场界环境噪声排放标准》(GB 12523-2011)。

(4) 固体废物
一般工业固体废物执行《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)，危险废物执行《危险废物贮存污染控制标准》(GB18597-2001及2013年修改单)中相关规定。

1.4 评价工作等级及评价范围
1.4.1 评价工作等级
a) 地表水
本工程地表水环境影响评价兼具水污染影响和水文要素影响，属于两者兼有的复合影响型。工程施工期生产污水污染物性质较简单，主要为SS等。生产废水经处理后优先回用于工程施工用水和洒水降尘等，不能回用的实施达标排放，但工程建设涉及白洋淀湿地自然保护区与水产种质资源保护区，根据《环境影响评价技术导则-地表水环境》(HJ2.3-2018)有关建设项目评价等级判定，本工程地表水环境评价工作等级为二级。

b) 地下水
本项目属于河湖整治工程，不属于跨流域调水，属《环境影响评价技术导则地下水环境》(HJ 610-2016)中附录A地下水环境影响评价行业分类表中的III类。按照建设项目地下水环境影响评价等级划分，本工程地下水环境影响评价等级为
c) 环境空气

本项目运行期不产生大气污染，施工期污染源主要为施工扬尘、车辆尾气和清淤时产生的少量臭气，且多为临时性的无组织排放，影响主要集中在施工区范围内及运输道路两侧，且规模较小、时间短，施工沿线无集中式排放源。参照《环境影响评价技术导则 大气环境》(HJ2.2-2018)，本项目大气环境影响评价等级为三级。

d) 声环境

本工程噪声主要是施工机械噪声，工程建设区执行《声环境质量标准》(GB3096-2008)中的2类、4a类，工程建设产生的噪声集中在施工期，且噪声多为偶发性、瞬时性，工程建成前后噪声级基本无显著变化。因此，根据《环境影响评价技术导则—声环境》(HJ 2.4-2009)评价等级划分依据，所以本工程的声环境影响评价工作等级定为二级。

e) 生态环境

工程占地面积5.4km²，根据《环境影响评价技术导则 生态影响》(HJ 19-2011)评价等级分级依据，工程占地涉及白洋淀湿地自然保护区与水产种质资源保护区，《白洋淀生态环境治理和保护规划（2018-2035年）》定位为华北平原最大的淡水湿地生态系统，具有蓄洪滞沥、生态涵养、生产生活、休闲游憩等多元生态服务功能，因涉及湿地自然保护区，其生态敏感性为特殊生态敏感区，结合工程占地面积、治理长度，确定生态环境影响评价等级为一级。

f) 土壤环境

本工程属于生态影响型建设项目，项目所在地多年平均水面蒸发量为1024.7mm，地下水埋深2m~4m，小于1.5m，且7.5<pH<8.5，根据《环境影响评价技术导则 土壤环境(试行)》(HJ 964-2018)生态影响型敏感程度分级判定依据，项目所在地土壤环境敏感程度为不敏感；本工程参考附录 A 土壤环境影响评价项目类别表中的水利 III 类项目，确定土壤评价等级为三级。

1.4.2 评价范围

1.4.2.1 地表水环境评价范围

根据《环境影响评价技术导则 地表水环境》(HJ2.3-2018)中水环境二级评价
范围的确定原则——宜不小于以入淀排放口为中心、半径 3km 的扇形区域，结合本工程环境影响特点，确定地表水环境评价范围为整个白洋淀，重点是藻荀淀。

1.4.2.2 环境空气评价范围

根据《环境影响评价技术导则 大气环境》(HJ 2.2-2018)中环境空气影响评价范围确定原则，三级评价项目不需设置大气环境影响评价范围。

1.4.2.3 声环境评价范围

根据《环境影响评价技术导则 声环境》(HJ 2.4-2009)中噪声环境影响评价范围的确定原则，确定本工程声环境影响评价范围为各施工工区及周围 200m 范围内。

1.4.2.4 土壤环境

鉴于本工程用地共 8100 亩（5.4km²），全部为临时用地，其中涉及水田 1590 亩、旱地 1200 亩、荷塘 4560 亩、其他土地（水塘、围堤等）750 亩，属于退耕还淀生态湿地恢复工程，且施工挖填土方全部回用于工程用地范围，不外运，不影响地方其他土壤环境质量，因此评价范围为本工程涉及水域的底泥。

1.4.2.5 生态环境

(1) 陆生生态

根据《环境影响评价技术导则生态影响》(HJ/T19-2011)中评价范围的确定原则，以及工程环境影响特点，确定本工程陆生生态环境评价范围为工程施工沿线外延 1000m 范围，水生生态环境评价范围扩展到白洋淀湿地自然保护区。

(2) 水生生态

水生生态环境影响评价范围为整个白洋淀，重点评价范围为重点是藻荀淀工程建设影响区。

1.5 评价内容及评价重点

1.5.1 评价内容

根据环境特征及项目特征，确定环境影响评价工作内容主要为：环境质量现状评价、工程分析、环境影响预测评价、环境保护措施及其可行性论证、水生态环境质量改善目标可达性分析等。

1.5.2 评价重点

本项目评价重点如下:
施工期：施工废水、噪声、扬尘及淤泥恶臭、清挖淤泥等对工程区及周边环境的影响，工程施工对湿地自然保护区、水产种质资源保护区、水生生态环境的影响。

营运期：工程实施后产生的水生态与水环境影响。

1.6 评价时段

本工程环境现状评价水平年为2020年，近、远期规划水平年分别2022年与2035年。根据环境影响评价技术导则，结合工程建设特点，除考虑地表水环境、生态环境评价时段为工程施工期和运行期外，其余评价时段为施工期。

1.7 环境保护目标

1.7.1 环境功能保护目标

生态环境：保护区域生物多样性和生态系统完整性，区域生态环境质量不致因建设本工程而受到明显影响，白洋淀自然保护区生态服务功能不受工程建设影响；对工程施工涉及的环境敏感区等生态环境保护目标及敏感点采取各种预防和缓解措施，使其影响范围和影响程度降至最低；有效控制工程建设新增水土流失，保护区域水土资源。

水环境：施工期废水、污水尽可能回用或达标外排，保护白洋淀水体水质不下降；运营期评价范围内地表水体水质因本工程实施产生正面环境效益。

环境空气与声环境：不因工程建设活动而造成施工区周边区域的环境空气和声环境质量明显下降。

1.7.2 环境敏感保护目标

a) 生态环境保护目标

生态环境保护目标如表1.7.2-1所示：

<table>
<thead>
<tr>
<th>类别</th>
<th>名称</th>
<th>级别</th>
<th>主要保护对象</th>
<th>与工程的位置关系</th>
<th>保护要求</th>
</tr>
</thead>
<tbody>
<tr>
<td>生态敏感区</td>
<td>白洋淀省级自然保护区</td>
<td>国家级</td>
<td>湿地生态环境、水生和陆栖生物群落，特别是要重点保护珍稀濒危野生动物、植物物种。</td>
<td>工程区涉及保护区核心区约226.7hm²，涉及保护区缓冲区约281.01hm²，涉及保护区实验区约32.29hm²。</td>
<td>核心区与缓冲区禁止布置施工临时生产设施，禁止排污，改善湿地生态系统的结构与功能，增强物种多样性。</td>
</tr>
<tr>
<td>类别</td>
<td>名称</td>
<td>级别</td>
<td>主要保护对象</td>
<td>与工程的位置关系</td>
<td>保护要求</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------------</td>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>白洋淀国家级水产种质资源保护区</td>
<td>省级</td>
<td>青虾、黄颡鱼、乌鳢、鳜鱼，其他保护物种包括鳖、团头鲂、田螺、中华绒螯蟹等</td>
<td>工程涉及水产种质资源保护区非养殖区113.57 hm²。</td>
<td>重点保护工程区现有的青虾、黄颡鱼、乌鳢、鳜鱼，其他保护物种包括鳖、团头鲂、田螺、中华绒螯蟹等主要保护对象</td>
</tr>
<tr>
<td></td>
<td>白洋淀风景名胜区</td>
<td>省级</td>
<td>旅游资源</td>
<td>整个工程用地范围位于该保护区</td>
<td>保护现有旅游资源，融入白洋淀湿地景观格局，再现白洋淀“荷塘苇海”特色湿地景观风貌，提升生态服务功能及湿地自然景观效果。</td>
</tr>
<tr>
<td></td>
<td>重点保护植物</td>
<td>省级</td>
<td>菱菜（Nymphoides peltatum）</td>
<td>距离二工区东侧最近距离约5m。</td>
<td>避让</td>
</tr>
<tr>
<td></td>
<td>重点保护野生动物</td>
<td>国家级</td>
<td>国家Ⅰ级1种：大鸨 国家Ⅱ级3种：黑鸢、鹊鹞和白尾鹞</td>
<td>大鸨分布于远离居民的麦地，数量非常少。猛禽分布广泛，分布于评价区的农田、村庄、林地</td>
<td>改善生境</td>
</tr>
<tr>
<td></td>
<td></td>
<td>省级</td>
<td>15种，如黑眉晨蛇、凤头鹦鹉、大杜鹃、苍鹭、白鹭、灰头绿啄木鸟、黑卷尾、灰喜鹊、喜鹊、黄鼬等</td>
<td>分布于评价区的的农田、村庄、林地、草丛等</td>
<td>改善生境</td>
</tr>
</tbody>
</table>

b) 水环境保护目标

本工程水环境保护目标为藻苲淀范围内水系和南刘庄国控断面，执行《地表水环境质量标准》（GB3838-2002）中的IV类标准。

c) 大气与声环境保护目标

环境空气和声环境保护目标主要调查藻苲淀退耕还淀湿地恢复工程及临时施工场地涉及到的居民集中居住区及其它重要保护目标。根据现场调查，工程施工区域200m范围内没有敏感目标，本项目周围居民点如表1.7.2-1所示
表 1.7.2-1 项目周边居民点一览表

<table>
<thead>
<tr>
<th>序号</th>
<th>敏感保护目标</th>
<th>相对工程区域方位</th>
<th>最近距离</th>
<th>户数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>北何庄村</td>
<td>东北</td>
<td>800m</td>
<td>约 79 户</td>
</tr>
<tr>
<td>2</td>
<td>杨孟庄村</td>
<td>北</td>
<td>245m</td>
<td>约 245 户</td>
</tr>
<tr>
<td>3</td>
<td>桥北村</td>
<td>东南</td>
<td>1000m</td>
<td>约 54 户</td>
</tr>
<tr>
<td>4</td>
<td>白庄村</td>
<td>南</td>
<td>550m</td>
<td>约 23 户</td>
</tr>
<tr>
<td>5</td>
<td>建昌村</td>
<td>西南</td>
<td>1400m</td>
<td>约 115 户</td>
</tr>
<tr>
<td>6</td>
<td>西马四村</td>
<td>西</td>
<td>2600m</td>
<td>约 216 户</td>
</tr>
<tr>
<td>7</td>
<td>寨里村</td>
<td>西</td>
<td>2300</td>
<td>约 224 户</td>
</tr>
</tbody>
</table>

d) 社会环境保护目标

施工区外西南面一块裸地上矗立着一块 3、4m 高的石碑，该石牌距离施工区西南端最近距离 30m，石牌上书写着“古秋风台”4 个大字，碑后赫然写着“燕太子丹送别荆轲处”。该石牌是 1970 年安新县文物普查队在安州普查时找到的古秋风台遗址和古秋风台石碑（现藏于安新县文化馆），为一文物保护单位，该石牌在施工区外，不会受到施工影响。
2 工程概况

2.1 拟建项目基本情况

雄安新区地处北京、天津、保定腹地，距北京、天津均为105km，距石家庄155km，距保定30km，距北京新机场55km，区位优势明显，交通便捷通畅，地质条件稳定，生态环境优良，资源环境承载能力较强，现有开发程度较低，发展空间充裕，具备高起点高标准开发建设的基本条件。

白洋淀位于华北平原北部，雄安新区中南部，太行山东麓永定河冲积扇和滹沱河冲积扇相夹峙的低洼地区。藻苲淀为白洋淀的组成部分，是白洋淀内万亩以上的七个大淀之一，位于三台、寨里、安州三个乡镇之间，藻苲淀水域构造独特，河淀相连，沟壕交错，水村园田星罗棋布，局部沿边筑堤围埝，堤内洼地连片，堤外淀水荡漾，形成了半水半旱的独特地理特征。

本项目工程区位于藻苲淀西部，地形平坦，开阔，地势较低，地面高程多在5m~7m，局部地区地面高程低于5m。现状土地利用类型主要包括荷塘、鱼塘、稻田以及麦田等。

2.2 工程内容及规模

藻苲淀退耕还淀生态湿地恢复一期工程位于雄安新区安新县境内藻苲淀西部，紧邻府河河口湿地。东部以何庄进村道路向西约500m为边界，西部以漕家沟为界，北部以主水道为边界（包含主水道），南以府河河道向北约450m为边界，总占地面积为5.4km²。

藻苲淀退耕还淀生态湿地恢复工程一期位于雄安新区安新县境内，工程面积为5.4km²，主要建设内容为沟壕疏通、内源污染净化、湿地生态恢复、智慧湿地等。

a）沟壕疏通

本工程沟壕疏通主要在第一施工区内进行，主要涉及沟壕湿地、季节性草本沼泽湿地及草本滩涂湿地的南部区域。

沟壕疏通主要通过扩挖原水系和开挖新水系等工程措施，为湿地生态修复及生态系统恢复提供水资源和水动力条件。

b）内源污染净化

本工程内源污染净化施工主要在第二施工区内进行，主要涉及草本滩涂湿地
的北部区域。

内源污染净化采取的主要措施为对污染严重的荷塘进行清淤，清淤厚度约30cm，清淤量为25.88万m³，清理的底泥在区域内就近进行滩涂地形营造。

c）荷塘抽稀和深泓开挖施工

为疏通湖泊湿地区主水流通道，防止荷花连片生长，进行湖泊湿地荷花抽稀及深泓开挖，同时营造大面积深水水域，丰富水下地形的同时，给水鸟提供良好的栖息场所。

荷塘抽稀和深泓开挖施工主要涉及湖泊湿地所在的第三施工区，三施工区区域内部高程较低（约5.5～6.0m），范围大（约144万m²），周边围垸高程一般在6.7～7.5m左右，现状常年有水，水深约均匀约1.0m，主要是因为围垸局部被打断，造成区域内与周边水系连通，导致区内处于淹没状态。

荷塘抽稀和深泓开挖考虑对干地施工与水中作业进行比选：干地施工先要对区域边界围垸局部进行加高（按白洋淀水位高程7.10m，围垸顶部高程7.30m控制），围垸长度约6.5km，里程较长，沿线施工和维护较困难，夏季是荷花的生长旺盛期，抽水施工对荷花的生长繁殖不利，区内存水量约140万m³，因区域内分布有大量的围垸，且表面凸凹不等，加上区域面积较大，抽水时间较长，抽干难度较大。水中作业考虑采用水陆两栖挖机进行，施工效率较低，每方的开挖单价相对要高，水中作业深泓开挖断面控制较困难。

d）围堤围垸拆除

围垸拆除穿插于三个施工区域内，每个施工区域内的施工方法及施工设备选择同以上各区所述。

e）植物种植施工

生态修复主要施工内容为植被恢复，植被恢复工程以种植水生/湿生植物为主。通过对淀区现有湿地植物种类和数量进行梳理，优先选取本土优势物种，在水质净化区微地形营造的基础上，依据水深垂直分布特征及湿地功能特点，在水深为<0m、0m-0.5m、0.5m-1.0m、1.0m-1.5m、>1.5m不同范围分别种植沉水植物、浮水植物、浮叶植物、挺水植物、湿生植物，丰富湿地植物群落多样性。

一施工区（主要涉及沟壕湿地、季节性草本沼泽湿地及草本滩涂湿地的南部区域）采用自动播种机+人工配合等进行播种，二施工区（主要涉及草本滩涂湿
地的北部区域）以人工种植为主，三施工区（湖泊湿地）采用船进行人工水上播种。

2.3 工程布置及建筑物

2.3.1 水系疏导工程

a）水系疏通

水系疏导主要包括水系疏通和围堤围埝拆除。藻苲淀进水水源为府河河口湿地出水和瀑河来水，根据藻苲淀内部主水道分布、内部水流南北走向，规划5条主水流，以改善淀区水动力条件和满足湿地生态需水需求。根据藻苲淀5条主水流规划布局，细化工程区水流布局，对内部水系进行疏通、整理，形成三级沟壕。其中一级沟壕4条，宽20~30m；二级沟壕5条，宽5~10m；若干三级沟壕，宽1~5m。

b）围堤围埝拆除

围堤围埝拆除按照尊重自然、顺应自然、应拆尽拆、恢复连通，局部开口、余段成洲、随形就势、分散处理，注重生态的原则，建立项目区域水动力模型，按接触区域水循环的阻碍为要求布置围堤围埝拆除。

工程区围堤围埝长度87km，其中中型围堤（顶宽5~10m）3.3km，小型围堤（顶宽2~5m）20.6km，围埝（顶宽<2m）63.1km。根据水动力模型模拟水动力改善程度，拆除围堤围埝长度43480m，总土方量约6.3万m³。其中，拆除中型围堤1.56km，拆除小型围堤围埝12.4km，拆除围埝29.53km。围堤围埝拆除采用水陆两栖挖掘机和陆用挖掘机相结合方式，拆除土方就近微地形营造。

2.3.2 内源污染净化工程

主要包括存量污水治理、氮磷释放高风险底泥清理及处置和农田表层土壤生态治理。

a）存量污水治理

根据现状围堤围埝分隔程度，将现状北部荷塘和稻田区分为13个独立水域，其中12个独立水域为荷塘区，1个独立水域为稻田区。按照水质优先，泥水协同、精准勘测，分类施策等原则，结合根据现状水量水质条件、工程总体平面布局等情况进行各独立水域存量水处理。其中，6个独立水域为地表水IV类水
体。根据先围埝后围堤原则依次拆除后，排入淀区；5 个独立水域水质为地表水 V 类水体，通过湿地植物修复使出水主要指标（COD、NH3-N、TP）满足 IV 类水质标准后，拆除围埝围堤排入淀区；2 个独立水域水质为地表水劣 V 类水体，水域面积约 85hm²，总存量水约 40 万 m³，采用芦苇台地湿地+曝气增氧处理，出水主要指标（COD、NH3-N、TP）满足 IV 类水质标准后，排入淀区。同时配置一体化污水处理设备进一步处理不满足 IV 类标准出水和南部沟渠存量水，达标后排入淀区。

2）底泥清理与处置

按照“精准勘测，分类施策，堤塘协同设计，先塘后堤”等原则，结合底泥理化性质、氮磷污染释放风险评价、工程平面布局等情况进行 12 个独立荷塘底泥清理及处置。其中，8 个独立水域底泥为氮磷释放轻微、中风险，采用植物修复+水生动物投放方式实现氮磷污染控制；4 个独立水域底泥为氮磷释放高风险，清理其底泥 30cm，清理量约 25.9 万 m³。清出的底泥营造生态滩涂 23.3hm²，将底泥包裹在滩涂内部，减少底泥与上覆水接触，并利用滩涂上水生植物吸收底泥氮磷。实现氮磷污染控制和生态恢复双重效益。

3）农田表层土壤生态治理

按照“水质保障为主，多目标协同，精准勘测，分类施策”等原则，结合土壤理化性质、氮磷污染释放风险评价结果进行农田表层土壤生态治理。针对低、中风险土壤，采用植物修复实现表土净化；针对高风险土壤，清理表土 19.10 万 m³（20cm），清出的土壤营造芦苇台地 65.1hm²，搭配种植芦苇等本土植物，实现表土净化。

2.3.3 健康湿地工程

1）健康湿地生境营造

主要按照“因地制宜，最小干预”原则，综合考虑地形地貌、高程分布、白洋淀水位变化、现状植被类型等自然条件，藻苲淀整体分为 5 个功能分区：沟壕湿地区、季节性草本沼泽区、草本滩涂湿地区、湖泊湿地区和水泡湿地区。其中沟壕湿地区位于高程 7.2m 以上的藻苲淀南部及西北部区域，结合区域内沟壕水系、现状用地分布，种植深根系湿生草本，重建沟壕湿地；季节性草本沼泽区主要位
于高程在6.8~7.2m的区域，属于藻荡淀水位波动频繁的消落区，充分利用现有稻田、芦苇，适度打断围堤围埝，营造多样化动植物生境，恢复消落区生态系统；草本滩涂湿地区位于高程6.8m以下区域，属于季节性草本沼泽区和湖泊湿地区之间的缓冲区，以自然缓坡入水滩地，并配置水生和湿生为主的草本科植物为主。湖泊湿地区主要位于藻荡淀中部的主水面区，主要营造湖泊湿地生境；水泡湿地区位于在藻荡淀与白洋淀交汇区，作为藻荡淀入白洋淀主淀的最后一道水质安全保障，进一步净化其他湿地区来水，同时防止因下游白洋淀主淀的顶托造成的藻荡淀水量及水质大波动。

工程一期区位于藻荡淀西部，根据藻荡淀总体功能分区，工程一期区主要包括沟壕湿地区、季节性草本沼泽区、草本滩涂湿地区和湖泊湿地区，重点恢复沟壕湿地、季节性草本沼泽、草本滩涂湿地和湖泊湿地四种自然湿地，其中沟壕湿地0.49km²，季节性草本沼泽0.87km²，草本滩涂湿地2.60km²，湖泊湿地1.44km²。各自然湿地区通过营造沟壕、芦苇台田、草本沼泽、草本滩涂、芦苇台田、深泓等生境，营造有利于水体自净能力提升、鸟类和鱼类栖息觅食的丰富自然湿地地形。

2）动植物恢复

在自然湿地生境营造的基础上进行植物修复、湿地动物投放等措施。其中，恢复挺水植物面积约36.2hm²，浮叶植物面积约4.06hm²，沉水植物面积约5.65hm²；投放鱼类约8850kg，底栖动物共计22075kg，设置人工鱼巢共15个。

2.3.4 智慧湿地工程

智慧湿地工程主要任务包括监测感知网建设、监控管理中心建设、管理应用平台建设以及BIM模型（BIM/CIM）建设与应用等4个方面。

a）监测感知网

新建自动水质监测站（含水位观测设备）1个、大气自动监测站1个、视频监控站6个。具体任务包括设备采购、集成、土建施工、安调、检验、测试、信息接收及处理等。

b）监控管理中心建设

监控管理中心由三个核心功能区组成，一是数据机房，二是指挥大厅，三是
会商室。通过监控管理中心，实时监控各类监测站的设备运行状态，监视淀区水位、降水量、水质、大气等情况，掌握突发事件发生、发展状况，并能够进行应急数据的实时采集，为领导层提供应急决策和指挥的依据。监控管理中心亦为智慧湿地系统建成后，运营单位的日常监控、管理、调度以及会商提供设施基础，并通过网络实现与涉水管理单位之间的互联互通。

c）管理应用平台建设

管理应用平台是智慧湿地工程的功能业务平台，由数据库系统、支撑平台、物联网监测系统、工程数字平台等四部分组成，其中数据库系统包括水务设施基础库、基础 GIS 库、三维模型库、水雨情数据库、水质数据库、视频监控库等数据资源库等；支撑平台包括操作系统软件、数据库系统软件、二维/三维基础软件平台等；物联网监测系统包括数据接收处理子系统、视频监控子系统、水环境监测预报子系统、防洪排涝监测预警子系统、水资源利用与调度管理子系统等；工程数字平台包括数字化三维模型子系统、工程建设管理子系统、运营维护管理子系统等。

d）BIM/CIM 建设及应用工程

采用主流的 BIM 建模平台，对藻苇淀退耕还淀生态湿地恢复工程范围内水道疏通、围堤围埝拆除进行 BIM 设计；建立工程范围内地质三维模型；对工程范围内的 1:500 地形图进行测绘，建立倾斜摄影三维模型；对所有模型进行总体装配形成藻苇淀退耕还淀生态湿地恢复工程整体 BIM 模型，由雄安雄创数字技术有限公司审查后，按要求汇入数字雄安 CIM 平台。

2.4 施工组织设计

2.4.1 施工条件

本工程位于河北省雄安新区安新县境内，工程区距离保定市约 71km，距离北京市约 176km，距离天津市约 163km，现有当地进村道路和围堤通道可直达工程区，对外交通条件便利。

工程区内地形起伏不大，地质构造较简单，未见断裂构造通过，未发现泥石流、溶洞、滑坡、崩塌、塌陷等不良地质作用。

藻苇淀位区域多年平均降水量 525mm，主要暴雨季节是每年的 6～9 月，区
域土壤冻结期一般在 12 月上旬至 3 月上旬，冻土深度多年平均 42cm，最大冻土深 55cm。

生活用水可从附近村庄的供水网引接，施工用电可从附近农网 T 接。

本工程所需物资主要为临时房建设施、生活物资、绿化植物等，均可就近从安新县城、保定市区市场采购。

2.4.2 施工交通

从外围进入工程区目前主要考虑利用部分附近的进村道路及沿线的围堤、障水埝的顶部通道，通道一般顶部宽度约 3.0～5.0m，为土路，基本满足本工程人员、设备进场需要。

区域内部根据工程南土北调的特点为方便开挖施工和土方调运及后期的植物分片种植，考虑沿着沟壕疏通线路修建主要的临时施工道路，路面宽度 6.5m，其它支路可根据需要从主路上分支接线，另外充分考虑对区域内部可利用的围埝进行修整加宽作为施工通道，加宽路面按 3.5m 控制。结合本工程特点，场内的道路均不作硬化处理。

湖泊湿地采取水下施工，不考虑施工道路。

2.4.3 施工导截流

整个工程区通过封闭、局部加高外围边界的围埝实现阻断工程区域与外围的水体连通；第一施工区通过选择适当的施工时段（6 月初～10 月底），实现自然干地施工；第二施工区通过抽水实现干地施工。

2.4.4 主体工程施工

本工程根据各区域特点，结合白洋淀 2020 年补水计划及一般每年 12 月上旬至 3 月上旬为区域土壤冻结期等情况，从南到北总体分三个施工区：一施工区自然干地施工，施工设备主要考虑采用反铲挖机+推土机+自卸汽车配合；二施工区抽水干地施工，施工设备主要利用潜水泵进行抽水，采用反铲挖机进行清淤挖机与人工配合进行滩涂地形营造，局部考虑铺设钢板进入施工；三施工区水中作业，主要采用水陆两栖挖机施工。
2.4.5 土石方平衡

本工程总开挖土方量约 105 万 m³，工程地处平原又属于白洋淀湿地生态区域，覆盖层厚，均为土方开挖，周边基本农田多、环境敏感因素多，难以找到合适的渣土消纳点，因此在工程区域内，利用场地自身范围宽广、地势平坦等特点，结合工程治理措施，做到在工程区域内自身土方挖填平衡，以减少运距，减少弃渣外运，降低施工难度，节约工程投资。

2.4.6 施工布置

从节约用地，减少征地难度，节省工程投资等角度，本阶段推荐施工营地和主要的施工场地布置于工程区内南端区域，建筑面积约 1800 m²，占地面积约 5000m²。

2.4.7 施工进度

根据往年的实际情况结合 2020 年白洋淀的补水计划，区域内一般 6 月初到 10 月底水位相对较低，同时考虑工程所在地 12 月上旬至 3 月上旬为冰冻期，综合考虑共计划安排总工期 12 个月。

2.5 工程用地

藻茆淀位于白洋淀府河老桥以西，紧邻新区起步区，属于白洋淀西大门。规范淀区范围为北至新安北堤、南至四门堤、东至府河老桥、西至现有障水埝及萍河入淀河口。藻茆淀退耕还淀生态湿地恢复工程一期实施位置为西部与府河河口湿地边界接壤，东部以进村道路向西约 500m 为边界，北部以主水道为边界（包含主水道），南以府河河道向北约 450m 为边界，工程用地面积为 8100 亩，全部为临时用地，项目用地采用土地租用的方式。

参照《白洋淀综合治理工程项目用地暂行政策》、《关于确定藻茆淀退耕还淀生态湿地工程一期用地政策的回复意见》补偿补助标准，经计算，本工程建设用地处理补偿静态总投资第一年费用为 3152.44 万元。补偿费用待新区拆迁政策明确后，根据新政策要求进行调整。
2.6 管护方案
2.6.1 运行方案
 藻苲淀一期工程主要承接府河河口湿地出水，府河河口湿地设计水量 25 万 m³/d，其中 10%回归府河下游河道，90%进入藻苲淀。
 非补水期，府河河口湿地出水通过漕家沟三条水道进入藻苲淀，通过设置进口高程控制流量，其中南侧进水口流量 12.1 万 m³/d，中间进水口流量 6.7 万 m³/d，北侧进水口流量 3.7 万 m³/d。

2.6.2 养护方案
 本工程养护方案如下：
 1）定期收割挺水植物。每年在进入冬季后需要对挺水植物进行合理的收割，收割水面以上的植物枯败的残体。收割的植物由维护看管单位统一进行资源化利用。
 2）专人管护。派专人 1-2 名对湿地内动植物残体进行打捞，并看管维护湿地植物，防止人为对湿地植物造成损坏。
 3）防止外来物种入侵。进行物种引进前，经过专家严格论证和病虫害检疫，从源头上杜绝外来有害物种和病源、虫源的侵入。
 4）长期监测。工程建设过程和工程完成后的 2 年内的水质及植物生长情况进行长期监测，评估工程效益，并根据监测结果及时调整与完善项目区生态系统的结构与功能。

2.6.3 安保方案
 1）建立监控系统。以“110”接处警指挥系统为依托，建成的融治安防控、综合资源、视频巡查于一体的“110”应急联动平台
 2）边界警示系统。项目区周边应建立相应的警示牌等，告诫进入项目区的人员，项目区属于鸟类热点区域、重点恢复区等。
 3）日常巡护。项目区日常巡护需要安排项目区周边从事生产经营活动的村民进行，可安排 1-2 人，保证项目区处于实时有人监控的情况。
3 工程分析
3.1 产业政策的符合性

本工程主要建设内容为沟壕疏通、内源污染净化、水质提升（含地形营造）、湿地生态恢复、智慧湿地等。对比《产业结构调整指导目录（2019年本）》，其中沟壕疏通、内源污染净化、水质提升、湿地生态恢复为鼓励类第二款第5条“蓄滞洪区建设”和第二款第6条“江河湖库清淤疏浚工程”以及第二款第19条“水生态系统及地下水保护与修复工程”；智慧湿地为鼓励类第二款第23条“水资源管理信息系统建设”工程。因此，工程建设符合国家产业政策。

3.2 与相关上位规划、法规的相符性

3.2.1 与《河北雄安新区规划纲要》的相符性

《雄安规划纲要》中明确表明要打造优美自然生态环境。要践行习近平生态文明思想，坚持尊重自然、顺应自然、保护自然，统筹城水林田淀系统治理，开展生态保护与环境治理，建设新时代的生态文明典范城市。强化白洋淀生态整体修复和环境系统治理，建立多水源补水机制，逐步恢复淀区面积，有效治理农村面源污染，确保淀区水质达标，逐步恢复“华北之肾”功能，远景规划建设白洋淀国家公园。国家公园是以保护具有国家代表性的自然生态系统为主要目的，实现自然资源科学保护和合理利用的特定陆域或海域，是我国自然生态系统中重要、自然景观最独特、自然遗产最精华、生物多样性最富集的部分，保护范围大，生态过程完整，具有全球价值、国家象征，国民认同度高，这就要求建设区域生态环境良好，在维护国家生态安全关键区域中的首要地位，是保护最珍贵、最重要生物多样性集中分布区中的主导地位，保护价值和生态功能在全国自然保护地体系中的主体地位。

《雄安规划纲要》中明确提出了项目建设目标，主要目标如下：

a) 保障白洋淀生态需水，恢复淀泊水面

实施退耕还淀，淀区逐步恢复至360km²左右。建立多水源补水机制，统筹引黄入冀补淀、上游水库及本地常规水资源，合理调控淀泊生态水文过程，使白洋淀正常水位保持在6.5~7.0m。建设水系连通工程，恢复淀泊水动力过程。

b) 实施系统治理，确保淀泊水质达标

坚持流域“控源——截污——治河”系统治理，实施入淀河流水质目标管理。全面治理工业污染源，有效治理农业与农村面源污染，全面清除存量垃圾，强化城镇、乡村污
水收集处理，对所有入淀排污口全面截污治理，打造良好河流生态环境，确保入淀河流水质达标，清除淀内内源污染，修复水体生态环境，提升淀泊水环境质量。白洋淀淀区水质逐步恢复到地表水环境质量 III–IV 类。

c) 加强整体修复，恢复白洋淀良好生态系统

以减少生物扰动为原则，合理划定清淤范围，科学实施生态清淤。充分利用自然本底优势，优化淀区生态格局，对现有苇田荷塘进行微地貌改造和调控，恢复多元生境。开展水生生物修复，恢复退化的原生水生植被，促进水生动植物土著种群增殖和种类增加，恢复保护鸟类栖息地，提高生物多样性，优化生态系统结构，增强白洋淀生态自我修复能力。

d) 完善策略，保护淀区独特自然生境，建设白洋淀国家公园

远景规划建设白洋淀国家公园，完善生物资源保护策略，保护淀区独特的自然生境和景观，保持淀区湿地生态系统完整性，将白洋淀建成人与自然和谐共生的试验区和科普教育基地。

通过藻苲淀退耕还淀湿地恢复工程，与新区段府河河口湿地水质净化工程结合，保证淀区入水水质良好，同时通过建设藻苲淀退耕还淀湿地恢复工程一期，逐步恢复区域湿地生态，两者区域的湿地生态格局及恢复景观有机融合，整体形成藻苲淀西部区域生态屏障；建设藻苲淀区域生态环境治理的先锋试验区域，为藻苲淀整体区域生态环境治理工程打造示范榜样，系统改善白洋淀入淀水质，恢复淀区生态格局，为建设远期白洋淀国家公园提供良好的环境基础。

3.2.2 与《河北雄安新区绿色空间专项规划》的相符性

《河北雄安新区绿色空间专项规划》（简称《绿色空间规划》）以坚持生态优先、绿色发展，坚持空间统筹、因需施策，坚持顺应自然、和谐共生，三个坚持为原则，规划构建新区绿色空间。到 2022 年，新区绿色生态网络初步构建，“一淀、三带、九片、多廊”的生态空间格局初具雏形；到 2035 年，绿色生态空间建设基本完成，林淀环绕、城绿交融、人与自然和谐共生的绿色生态宜居新区全面建成；到本世纪中叶，新区绿色空间系统完整，生态环境优美自然，新时代生态文明典范城市全面建成。

《绿色空间规划》中指出开展白洋淀环境治理和生态修复，旨在恢复“华北之肾”功能，逐步恢复淀区面积，保障和改善湿地生态品质和功能，加强生物多样性保护，发挥白洋淀水域对于华北地区的生态保育作用，展现蓝绿交织，荷塘苇海的华北水乡
景观风貌。

本工程在退耕还淀的设计方案中针对藻荡淀区现状农田、荷塘、鱼塘等多种用地类型实现退耕还淀，实行农田区域和荷塘区恢复种植水生植物，构建多样化的生态湿地和生境类型，以改善入淀来水水质和修复湿地生态环境为主要目的，辅以生态种植等措施，恢复淀区水生生态系统和湿地景观。藻荡淀区退耕还淀湿修复措施体系符合《绿色空间规划》的要求，有助于新区绿色空间体系的构建和形成。

3.2.3 与《河北省水污染防治工作方案》的相符性

《河北省水污染防治工作方案》提出近期目标：到2020年，全省海河流域水质优良（达到或优于Ⅲ类）比例分别达到47%以上和100%，丧失使用功能（劣于Ⅴ类）的水体断面比例较2014年下降21个百分点以上，地下水质量考核点位水质级别保持稳定，近岸海域水质优良（一、二类）比例保持稳定不降，重要江河湖泊水功能区水质达标率达到75%。各市城市建成区黑臭水体控制在10%以内，全省城市集中式饮用水水源水质达标率达到100%，农村饮用水水源水质达标率达到80%以上。

河北省水污染防治工作重点包括：

a）加强源头控制，严控水污染物排放总量

严格控制工业污染源排放，全面取缔“十小”落后企业；提升城镇环境基础设施建设与运行水平；推进农村农业污染治理。

b）保护良好水体，促进河湖水质持续改善

加强河湖水生态保护，加强山前湖库和山区河流良好水体保护；实施重点湖库上游生态修复工程大力推进退耕还林与水土流失治理；强化冬奥会场地及相关流域生态环境保护。

c）开展治理攻坚，改善污染严重河流水质

深化流域水污染防治，持续推进海河流域综合整治，严格控制入河排污总量，全面治理不达标重污染河流，消除城市建成区黑臭水体。

d）提升监控能力，切实保障公众环境权益

建立水环境监测预警与响应系统及机制，统筹建设水环境资源与水环境监测网；加强环境网格化协同监管，完善环境监测网格化管理体系；全面推进河长制，提高环境风险应急和防控能力，加大环境执法力度；控制排污单位采取措施确保稳定达标排放，
严厉打击环境违法行为。

e) 完善政策标准，健全环境管理制度体系

建立健全地方法规，制定和实施流域水污染特别排放限制，深化污染物总量控制，落实排水排污许可制度。

本项目在充分解读河北省水污染防治工作方案的基础上，通过实施藻注明来源退耕还藻恢复淀区湿地，进一步削减入淀污染负荷，净化上游来水水质，保障断面水质稳定达标，有助于确保白洋淀水质逐步达标，以期实现藻来源淀、白洋淀淀区水环境、水生态的持续改善和保护。

3.2.4 与《河北省湿地保护条例》的相符性

本工程属于生态湿地恢复工程，符合《河北省湿地保护条例》第三十条——县级以上人民政府应当采取扶持措施，实施湿地生态保护和修复、退耕还湿和湿地水土流失综合治理工程，加强水资源保护和地下水资源超采治理，合理调配水资源，科学利用雨水洪水，充分利用再生水，维持湿地的基本生态用水，保护和恢复湿地生态功能等规定要求。同时也应满足《河北省湿地保护条例》以下规定要求。

第二十五条规定：建设项目对湿地生态系统产生影响的，应当依法进行环境影响评价。建设单位编制的环境影响评价文件应当包括湿地生态功能影响评价内容，并有相应的湿地保护方案。建设单位应当严格按照湿地保护方案进行施工，减少对湿地生态系统的影响，避免对湿地生态功能的损害。

第二十七条规定：因建设工程等特殊需要确需临时占用湿地的，应当经县级人民政府有关湿地保护管理部门批准。

3.2.5 与《河北省湿地自然保护区规划（2018-2035 年）》相符性

《河北省湿地自然保护区规划（2018-2035 年）》明确 2015-2030 年，白洋淀、文安洼通过退耕还湿，增加湿地面积 9.06 万公顷，本工程退耕还淀完全相符。

“十三五”期间，按照突出重点、明确目标的修复策略，河北省加大实施水生生物资源养护与生态修复工程，建设规范完善 17 个国家级水产种质资源保护区，本工程建设正是实施水生生物资源养护与生态修复工程。因此完全符合河北省有关水产种质资源保护区管理规定要求。
3.3 与相关环保规划的相符性

3.3.1 与《白洋淀生态环境治理和保护规划（2018-2035 年）》的相符性

依据《白洋淀生态环境治理和保护规划（2018-2035 年）》，白洋淀的功能定位为：蓄洪滞沥、生态涵养、生产生活与休闲游憩。针对白洋淀现存的生态环境问题提出的治理目标为：水面恢复、水质达标与生态修复，通过补水、治污、清淤等措施进行综合治理。

《规划》分阶段目标如下：

a) 到 2020 年，淀区正常水位达到 6.5m 左右，淀区面积逐步恢复，府河、孝义河等 8 条河流水质考核断面达到考核要求，淀区现有考核断面水质基本达到国家地表水环境质量 III~IV 类标准；生态多样性退化得到有效控制；

b) 到 2022 年，淀区正常水位达到 6.5~7.0m，淀区考核断面水质达到国家地表水环境质量 III~IV 类标准，打通河流—淀泊生态廊道，淀区生态功能显著增强，生态多样性明显提高；

c) 到 2035 年，淀区水位保持在 6.5~7.0m，府河、孝义河等 8 条河流水质稳定在国家地表水环境质量 IV 类标准，淀区水质达到国家地表水环境质量 III~IV 类标准；环淀生态绿化带全面建成，淀区生态功能区生境质量优良，生物多样性大幅提高，将水位波动过程中新增消落区内 60km² 稻田和旱地逐步修复为湿地；

d) 到本世纪中叶，淀区水质功能稳定达标，淀区生态系统结构完整、功能健全，白洋淀生态修复全面完成，展现白洋淀独特的“荷塘苇海、鸟类天堂”胜景和“华北明珠”风采，远景规划建设国家公园。
图 3.2.1-1 白洋淀流域生态环境治理和保护规划图

图 3.2.1-2 白洋淀生境建设规划图
藻苲淀作为白洋淀西大门，依据白洋淀相关上位规划及政策文件总体要求，藻苲淀退耕还淀生态湿地恢复区主要承担的功能是恢复工程退耕还淀区域水动力条件、湿地生态系统和白洋淀湿地特色景观风貌，兼顾淀区自净和水质提升功能。本工程推进藻苲淀退耕还淀生态湿地恢复先行先试，以水动力条件改善、水质改善、生态恢复为重点，通过实施水系疏导、内源污染净化、健康湿地（含生境营造、动植物恢复）、智慧湿地等措施，优化淀泊水动力，控制内源污染负荷，提升湿地水质，丰富湿地生境，恢复白洋淀西部生态屏障，再现白洋淀“荷塘苇海”特色湿地胜景。

本工程设计具体目标如下：

1) 改善工程区水动力条件。基于地形地貌和现状沟渠分布，疏、蓄、导结合，疏通、整理内部沟渠，合理打断围堤围埝，形成三级沟壕，改善区域水动力条件，满足自然湿地生态需水，恢复区域水生态空间。

2) 削减工程区内源污染负荷。因地制宜，主要采用多类型湿地水质净化、生态滩涂等生态净化技术，净化荷塘和稻田存量水水质，控制荷塘底泥（农田土壤）氮磷污染释放，实现主要水质指标（COD、NH3-N 和 TP）达到地表水 IV 类标准后排入淀区。
3）构建健康湿地生态系统。以自然恢复为主，营造沟壕、草本沼泽、滩涂、湖泊等自然湿地生境，恢复陆生草本植物-挺水植物-沉水植物组成的植物群落及食草型-滤食性-肉食性鱼类群落，构建沟壕湿地、季节性草本沼泽、草本滩涂湿地和湖泊湿地等多元自然湿地，逐步恢复自然湿地生态系统完整性。

4）融入白洋淀湿地景观格局，再现白洋淀“荷塘苇海”特色湿地景观风貌，提升生态服务功能及湿地自然景观效果。

构建健康湿地生态系统是本工程的主要目标之一，即：恢复陆生草本植物-挺水植物-沉水植物组成的植物群落及食草型-滤食性-肉食性鱼类群落，构建沟壕湿地、季节性草本沼泽、草本滩涂湿地和湖泊湿地等多元自然湿地。这与《白洋淀生态环境治理和保护规划（2018-2035年）》构建的修复蓝色生态空间，提升水域生态功能规划任务是完全一致的。加强水系连通也是符合该规划的建设内容之一。

本工程设计的水系疏导、内源污染净化工程也完全符合《白洋淀生态环境治理和保护规划（2018-2035年）》第24条“内源治理”规划内容。

《白洋淀流域生态环境治理和保护规划（2018-2035年）》第6章淀区生态修复第46条退耕还淀、第47条围堤围埝道路清除、第48条淀区底泥质量修复均提出了具体的规划任务要求，本工程的建设任务与设计方案均满足其相应规划要求，如淀内底泥视其重金属浓度及其环境风险程度，按淀内鱼塘、荷塘及部分淀泊的污染底泥实施分类处置，对较重污染的底泥分区分期实施生态清淤，对清除的底泥实施无害化处理或资源化利用，满足相关标准的底泥就近用于生态岛屿生境建设，产生的余水经处理后实施达标排放。对污染较轻的底泥，实施原位修复或自然恢复方式，逐步改善底泥质量。

本工程有关生境建设、生态水文过程控制、生物多样性修复的建设内容也符合《白洋淀生态环塔理和保护规划（2018-2035年）》第49条~第54条的规划要求。重点保护白洋淀区重要的动植物资源及其自然生境，维护芦苇台田、荷塘等特色景观，实施严格的生态保护管控措施。

本工程还设计了智慧湿地建设内容，也是符合《白洋淀流域生态环境治理和保护规划（2018-2035年）》第八章第79条智能管控要求。

综上，藻苲淀本身就是白洋淀的一部分，藻苲淀退耕还淀还湿的实施，将为白洋淀生态环境保护提供有力支撑，与府河河道治理、府河河口湿地工程结合，进一步稳
定入淀水质，构建完整生态格局样貌，共同推进实现《规划》提出的展现碧波万顷、荷塘苇海的水域生态景观。本工程承担的功能与建设总体目标及具体目标完全符合《白洋淀生态环境治理和保护规划（2018-2035年）》提出的功能定位与治理目标。

3.3.2 与《白洋淀流域治理实施方案（2018-2020年）》（冀政字〔2018〕38号）的相符合

为全面贯彻落实国务院批复的《白洋淀生态环境治理和保护规划》，加快推进白洋淀生态环境综合治理，持续改善白洋淀水环境质量，结合新区当前规划建设实际，相关部门制订《雄安新区白洋淀生态环境治理和保护规划实施方案》（以下简称《实施方案》）。

《实施方案》中针对白洋淀生态治理提出以下主要任务和重点工程：

a）有序开展退耕还湿还淀

根据白洋淀自然湿地生态系统演替特点，将水位波动过程中新增消落区内 60hm²的稻田和旱地逐步修复为生态湿地，扩增淀泊水面，增加水系连通，恢复淀区湿地生态环境系统完整性。

b）科学拆除淀区围堤、围埝和道路

依法科学有序清除现有种植、养殖及其他围堤、围埝，通过疏挖部分草地、林地、旱地、稻田和苇田，对淀区湿地功能弱化、底泥淤积污染严重的区域实施综合整治，促进水体自由流动，提高淀区水动力条件，恢复湿地水面和生态系统。

c）有针对性地开展生态清淤

在调查淀区底泥污染物成分及含量的基础上，研究淀区内源污染物沉积释放规律及清淤对水生态系统的影响。分类处置淀内鱼塘、荷塘及部分淀泊的污染底泥，以改善水质为目标，在主要河流入淀口、主航道及底泥沉积厚且污染严重的区域分区实施生态清淤，对污染较轻底泥采用原位修复或自然恢复的方式进行处置，确保清除污染底泥不破坏原生土层，不产生渗漏；确保清淤过程生态化，减少对水环境的污染，降低对底栖生境的影响。对清除的底泥进行无害化处理和资源化利用，符合标准就近用于生态岛屿生境建设。

d）营造白洋淀鸟类、水生生物及陆域生境

利用生态功能区内搬迁后的村庄原址，选择 7.5m 以上地势较高区域，修复鸟类栖息地生境；以恢复白洋淀土著水生动物栖息地为优先原则，结合生态空间、河口湿
地、生态岛屿、水系连通等生态修复工程，因地制宜营造多元生境，形成适宜水生
物生长和繁殖的栖息地，建设台田生态景观，优化芦苇台田，改善水动力条件，恢复
白洋淀特有的“荷塘苇海”景观风貌。

e）恢复和保护白洋淀水生植被、鱼类生物、底栖生物及鸟类的多样性

恢复或重新引入水车前、杉叶藻、莼菜等珍稀濒危物种和环境指示种，重建水生
植物群落。营建鱼类繁殖场，实施人工繁殖与增殖放流，引入土著鱼类，建设鱼类洄
游通道，促进鲫鱼、鲤鱼、黄颡鱼等渔业资源自然繁殖，恢复水生生物系统；通过恢
复自繁、重新引入、增殖放流，增加底栖生物多样性，恢复白洋淀生态系统食物网的
完整性。通过设置鸟类繁殖救护中心等，营造适宜天鹅类、雁类、鹭类、鹤类、鹳类、鹳
等鸟类栖息生境区。

藻苲淀是白洋淀生态恢复重点区域，也是南刘庄断面水质是否能够达标的主要影
响因素之一。本工程主要建设内容为沟壕疏通、内源污染净化、水质提升（含地形营
造）、湿地生态恢复、智慧湿地等，这与《白洋淀流域治理实施方案（2018-2020 年）》
提出的指导思想——围绕“三水共治”、加快水生态系统治理、按照“标本兼治、远近
结合、问题导向、分区施策”的原则完全一致；与其提出的水质明显改善（水质目标
是 IV~V）、生态得到恢复、补水机制建立等主要目标完全一致。本工程建设内容是
《白洋淀流域治理实施方案（2018-2020 年）》提出的污染治理八大重点工程之一，
是第 7 项入湖河流生态治理修复工程指定的建设内容，如该实施方案明确提出建
设芦苇湿地前置库缓净化系统，本工程按照这个要求设计了首要建设内容。

因此，开展藻苲淀退耕还淀生态湿地恢复工程，改善淀区水动力条件，扩增淀泊
水面，进一步净化府河河口湿地出水和入藻苲淀河流来水，逐步恢复淀区生态系统，
营造白洋淀特色湿地景观，是实现淀区水动力改善、湿地生态系统恢复和重现荷塘苇
海白洋淀特色生态湿地景观风貌的迫切需求，也是白洋淀生态环境治理和改善的长效
举措。本工程建设完全符合《白洋淀流域治理实施方案（2018-2020 年）》。

3.4 与“三线一单”的相符性

本工程属于改善环境质量的项目，不增加排污，不会触碰环境质量底线，工程建
设不消耗外来水资源，也不会触碰资源利用上线。《中共中央办公厅、国务院办公厅
印发的《关于划定并严守生态保护红线的若干意见》（厅字〔2017〕2 号）》明确提出：
以改善生态环境质量为核心，以保障和维护生态功能为主线，按照山水林田湖系统保
护的要求，划定并严守生态保护红线，实现一条红线管控重要生态空间，确保生态功能不降低、面积不减少、性质不改变，维护国家生态安全，促进经济社会可持续发展。建立湿地保护修复制度，全面保护湿地，强化湿地利用监管，推进退化湿地修复，提升全社会湿地保护意识，为建设生态文明和美丽中国提供重要保障。由此可见，本工程是实施湿地治理与保护、实现人水和谐的具体实践。因此，该工程也不是负面清单项目。

2018年6月30日，河北省人民政府以“冀政字〔2018〕23号”文发布《河北省人民政府关于发布<河北省生态保护红线>的通知》，河北省生态保护红线总面积4.05万平方公里，占全省国土面积的20.70%。主要类型有坝上高原防风固沙生态保护红线、燕山水源涵养—生物多样性维护生态保护红线、太行山水土保持—生物多样性维护生态保护红线、河北平原河湖滨岸带生态保护红线、海岸海域生态保护红线等。

河北平原河湖滨岸带生态保护红线主要分布于廊坊、沧州、衡水市，秦皇岛、唐山市南部，保定、石家庄、邢台、邯郸市东部。生态保护红线面积1618平方公里，占全省陆域面积的0.86%。生态系统类型及生态功能：区域内主要以农田生态系统为主，兼有河流与淡水湿地生态系统，分布有海河、滦河两大水系，其中，海河是该区域最大河流，主要支流有北运河、永定河、大清河、子牙河、南运河。区域内还分布有白洋淀、衡水湖、南大港等河湖、湿地、洼地，具有重要的洪水调蓄、生物多样性维护功能。保护重点：主要保护内陆河流与淡水湿地生态系统，逐渐恢复流域内珍稀濒危野生动植物栖息地。

根据数据比对，工程不占用生态保护红线。因此本工程与生态保护红线协调。

因《白洋淀省级自然保护区规划》、《白洋淀国家级水产种质资源保护区规划》、《白洋淀省级风景名胜区规划》资料暂缺，后续补充该规划的相符性。

3.5 工程影响因素分析

藻เทศกา退耕还淀生态湿地恢复工程一期位于雄安新区安新县境内，工程面积为5.4km²，主要建设内容为沟壕疏通、内源污染净化、水质提升（含地形营造）、湿地生态恢复、智慧湿地等。

藻漖淀是白洋淀的子淀区，位于白洋淀府河老桥以西，紧邻新区起步区，属于白洋淀西大门。藻漖淀工程一期范围内主要有府河、漕河、瀑河、萍河等河流汇入，其中漕河、瀑河、萍河基本干枯，仅府河常年有水，其水源主要是上游污水处理厂尾水、
直排污水、农田退水以及不定期不定量的大水系引调水。藻苲淀涉及南刘庄国控断面，现状水质为 IV 类~劣 V 类，不能满足其 III~IV 类水质目标。由于上游河流来水量少、沿岸污染排放量大、藻苲淀区围垦造田严重等因素，藻苲淀是白洋淀生态环境退化严重区域。

藻苲淀退耕还淀生态湿地恢复工程一期总体从南到北分为四个区域有针对性的进行规划和治理，分别为：沟壕湿地、季节性草本沼泽湿地、草本滩涂湿地、湖泊湿地。通过沟壕疏通、内源污染治理和水质提升、生态修复和智慧湿地建设等措施，保护湿地生态环境连贯性，确保湿地生态廊道畅通；保护湿地水域环境和陆域环境的完整性，避免湿地环境的过度分割而造成环境退化；营造湿地生物生境，恢复湿地生物多样性，充分发挥湿地水质净化功能，降低入淀污染负荷，逐步恢复藻苲淀湿地生态系统结构与功能。因此，工程建设对环境可能产生不利影响主要发生在施工期。

a) 工程影响源分析

施工期产生不利环境影响的工程活动如下：

1) 进场道路与场内道路建设

工程施工进场道路主要考虑利用部分附近的进村道路及沿线的围堤、障水埝的顶部通道，通道一般顶部宽度约 3.0~5.0m，为土路。工程施工本身区域相对集中封闭，施工场地采取全封闭隔离措施，对外界干扰较小，主要是设备、人员、材料进场需利用部分进村道路和沿线围堤，可能对周边居民出行造成短暂的交通干扰。

藻苲淀工程一期中南部沟壕湿地、沼泽湿地等部位进行的沟壕疏通、围埝拆除的粘土大部分需要调运至北部的滩涂湿地等部位作为种植土进行利用，为方便开挖施工和土方调运及后期的植物分片种植，考虑沿着沟壕疏通线路修建主要的临时施工道路，其它支路可根据需要从主路上分支接线，另外充分考虑对区域内部可利用的围埝进行修整加宽作为施工通道。

2) 部分区域清淤、内源污染净化施工及地形营造

内源污染净化采取的主要措施为对污染严重的荷塘进行清淤，清淤厚度约 30cm，清淤量为 25.88 万 m³，清理的底泥在区域内就近进行滩涂地形营造。滩涂地形营造要求在干地条件进行。封闭和加高围埝所需粘土采用本工程范围内沟壕疏通所开挖的粘土。施工设备主要利用潜水泵进行抽水，采用反铲挖机进行清淤，挖机与人工配合进行滩涂地形营造，局部考虑铺设钢板进入施工。
3）沟壕疏通施工

沟壕疏通主要通过扩挖原有水系和开挖新水系等工程措施，为湿地生态修复及生态系统恢复提供水资源和水动力条件。

4）荷塘抽稀和深泓开挖施工

为疏通湖泊湿地区主水流通道，防止荷花连片生长，进行湖泊湿地荷花抽稀及深泓开挖，同时营造大面积深水水域，丰富水下地形的同时，给水鸟提供良好的栖息场所。荷塘抽稀和深泓开挖考虑了干地施工与水中作业方案比选：考虑对荷花生长繁殖的生态保护、深泓开挖本身不需要太高的控制精度等综合比较，初步设计暂推荐水中作业方式进行施工。

5）围堤围埝拆除施工

围埝拆除穿插于三个施工区域内，在每个施工区域内的施工方法及施工设备选择同以上各区所述。

6）植物种植施工

生态修复主要施工内容为植被恢复，植被恢复工程以种植水生/湿生植物为主。通过对淀区现有湿地植物种类和数量进行梳理，优先选取本土优势物种，在水质净化区微地形营造的基础上，依据水深垂直分布特征及湿地功能特点，在水深为<0m、0m-0.5m、0.5m-1.0m、1.0m-1.5m、>1.5m 不同范围分别种植沉水植物、浮水植物、浮叶植物、挺水植物、湿生植物，丰富湿地植物群落多样性。

施工区（主要涉及沟壕湿地、季节性草本沼泽湿地及草本滩涂湿地的南部区域）采用自动播种机+人工配合等进行播种，二施工区（主要涉及草本滩涂湿地的北部区域）以人工种植为主，三施工区（湖泊湿地）采用船进行人工水上播种。

b) 工程影响环境因素分析

综合上述施工活动可能产生的环境影响，受影响的主要环境要素有水环境、噪声、环境空气、生态环境及水土流失等。

①水环境：施工过程产生的各种施工废水，采用环保绞吸式水下湿式清淤疏浚作业时会扰动湖底，引起淀局部水域悬浮物浓度升高；淤泥脱水及挖泥船产生一定废水，少量设备跑、冒、滴、漏污油，可能会影响周边水域水质。主要污染物 COD、SS、石油类等污染物。本工程办公生活用房考虑在工程区附近租用民房，因此施工场地不产生施工人员生活污水。
②环境空气：施工开挖、回填、运输车辆运输等过程中将产生扬尘；施工机械运行排放的废气，施工营地食堂油烟，清淤及污泥处置过程产生的恶臭等。

③噪声：反铲挖掘机、推土机、水陆两栖挖掘机、潜水泵、自动播种机等运行过程中产生机械噪声，自卸汽车运输过程中产生车辆运输噪声。

④水土流失：土建工程施工开挖、回填过程中如不注意防护遇地表径流易形成水土流失。表层土壤处置破坏原有植被，高噪声施工机械对生态造成惊扰；水域施工对水生动植物生境环境及生物量产生不利影响。

⑤生态影响：占用土地、填挖使原有植被遭到破坏，污泥处置过程如不注意防护，遇地表径流易形成水土流失，导致局部生态系统结构发生变化。

3.6 施工期主要污染源

3.6.1 废气

3.6.1.1 扬尘、尾气

施工期主要污染环节为：运输车辆运输时产生的扬尘，土石方开挖、台协地形和滩涂地形营造在受风力作用下产生的 TSP 污染。工程施工运输车辆及其它机械设备在运行过程中排放少量的燃油废气，污染因子包括 SO2、NO2，烃类化合物，主要污染因子为 NO2，本项目主要施工机械废气排放情况见表 3.6.1-1 所示。

<table>
<thead>
<tr>
<th>序号</th>
<th>机械名称</th>
<th>单机时耗油量（kg）</th>
<th>单机污染物排放（NO2，kg）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>反铲挖掘机</td>
<td>20</td>
<td>0.10</td>
</tr>
<tr>
<td>2</td>
<td>水陆两栖挖掘机</td>
<td>10</td>
<td>0.14</td>
</tr>
<tr>
<td>3</td>
<td>推土机</td>
<td>17</td>
<td>0.12</td>
</tr>
<tr>
<td>4</td>
<td>自卸汽车</td>
<td>15</td>
<td>1.08</td>
</tr>
</tbody>
</table>

3.6.1.2 施工营地食堂油烟

施工营地食堂可供 300 人就餐，燃用液化石油气。按每人每餐消耗食用油 10g，

每天 3 餐，炊事时间为 6h 计算，施工营地食堂使用油消耗量为 9kg/d，一般油烟挥发量占总耗油量的 2-4%，平均为 2.81%，则油烟产生量为 42.2g/h。

3.6.1.3 恶臭

内源污染净化施工过程中，需对污染严重的荷塘进行清淤，清淤厚度约 30cm。
底泥在受到扰动和转运、堆放过程中，有机物可分解产生氨、硫化氢等恶臭气体，呈无组织状态释放。恶臭不但会污染环境，造成人的感官不快，达到一定浓度还会危害人体健康。

臭味浓度是以嗅觉阀值为基准划分等级的，共分为六级，见表3.6.1-2

表3.6.1-2 臭味强度分级表

<table>
<thead>
<tr>
<th>臭味强度</th>
<th>感觉强度描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>无气味</td>
</tr>
<tr>
<td>1</td>
<td>勉强能感觉到气味（感觉阀值）</td>
</tr>
<tr>
<td>2</td>
<td>气味很弱但能分辨其性质（识别阀值）</td>
</tr>
<tr>
<td>3</td>
<td>很容易感觉到气味</td>
</tr>
<tr>
<td>4</td>
<td>强烈的气味</td>
</tr>
<tr>
<td>5</td>
<td>无法忍受的极强气味</td>
</tr>
</tbody>
</table>

限制标准一般相当于恶臭强度 2.5～3.5 级，超过该强度范围，即认为发生恶臭污染，需要采取相应措施。

底泥开挖工程属于开放式作业，污染物具备面源扩散及无组织排放特性，较难定量，类比已经实施的清淤工程，淤泥在疏挖过程中在岸边将会有较明显的臭味（3～4 级），30m 之外达到 2 级强度，有轻微臭味，低于恶臭强度的限制标准（2.5～3.5 级）；50m 之外，基本无气味。

3.6.2 废水
3.6.2.1 含泥废水
施工生产废水来自淤泥堆放、主体工程施工产生的泥浆水等，主要污染物为悬浮物，悬浮物最大浓度为 20000mg/L，泥浆水经过沉淀池处理后，上清液回用于施工或就近排入工区周边水沟。

3.6.2.2 设备及车辆冲洗废水
施工机械主要以柴油和汽油动力燃料，机械车辆冲洗排放废水悬浮物和石油类含量较高，施工车辆和机械冲洗废水中含有一定量的石油类，若含油废水直接排入水体，在水面上形成油膜，会造成水中溶解氧不易恢复，影响水质。

3.6.2.3 施工生活污水影响分析
本工程施工人员入驻施工营地，高峰期共需施工人员约 300 人，根据同类工程经
验，按照每人每天产生 80L 污水计，产生污水量约 24m³/d。施工生活污水含有多种污染物，主要污染因子为 CODCr, BOD5, NH3-N, TP, 其浓度最大值分别为: 400mg/L、200mg/L、25mg/L、8mg/L，直接排放会进一步加重淀泊有机污染。

3.6.2.4 底泥清淤对水质影响分析

水陆两栖挖掘机清淤过程中，会不可避免带起部分沟道底部的泥沙，除了会产生一定量的 SS 外，亦会使底泥中吸附的污染物部分释放出来，对水环境造成一定影响。

3.6.3 噪声

施工期间噪声源主要来自施工机械、运输等施工过程中产生的噪声。噪声较大的机械有反铲挖掘机、水陆两栖挖掘机、推土机、自卸汽车等。本工程施工期间噪声为间歇式、暂时性影响，施工结束随之消除。

主要噪声源及源强见表 3.6.3-1。

表 3.6.3-1 工程主要施工机械废气排放情况见表

<table>
<thead>
<tr>
<th>序号</th>
<th>机械名称</th>
<th>测点距离（m）</th>
<th>噪声源强 dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>反铲挖掘机</td>
<td>1</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>水陆两栖挖掘机</td>
<td>1</td>
<td>95</td>
</tr>
<tr>
<td>3</td>
<td>推土机</td>
<td>1</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>自卸汽车</td>
<td>1</td>
<td>95</td>
</tr>
<tr>
<td>5</td>
<td>潜水泵</td>
<td>1</td>
<td>58</td>
</tr>
</tbody>
</table>

3.6.4 固体废物产生量

本工程沟壕疏通开挖总共约 37.24 万 m³，其中清淤约 4.67 万 m³，粘土开挖约 32.56 万 m³，淤泥就近摊铺于水系两侧，粘土大部分调运往二施工区用于滩涂地形营造的表面覆盖，部分用于台田营造，剩余部分用于表土置换；深泓开挖约 16.47 万 m³，就近摊铺于堤坝两侧，围埝拆除约 6.83 万 m³，分别用于地形营造和就近摊铺处理；高风险土方清理约 19.09 万 m³，全部就近用于台田地形营造，底泥清淤约 25.88 万 m³，全部就近用于滩涂地形营造，因此本工程施工过程中不产生土方废弃量。

本工程的固体废物主要为生活垃圾。施工高峰期人数 300 人，施工期为 12 个月。施工人员的生活垃圾按 0.5kg/人·d 考虑，则施工期间生活垃圾每天排放量约为 150kg/d，施工期共产生生活垃圾 54t，经集中收集后由当地环卫部门处理处置。
3.6.5 生态环境影响因素

工程施工对评价区内植物及植被的影响主要有以下几个方面：① 工程占地 540 hm²，其中施工营地 0.5 hm²：工程占地对地表及水生植被的破坏；② 施工活动产生的废水、废气、扬尘等对植物生长造成一定的影响。

工程施工对水生生物的影响主要为：① 沟壕疏通、深泓开挖和底泥疏浚造成的悬浮物浓度增加等水质污染，局部水域悬浮物浓度将增加，水生生物的栖息环境受到影响，不同的鱼类对悬浮物质含量高低的耐受范围有所区别。据有关的实验数据，悬浮物质的含量水平为 8×10^4 mg/L 时，鱼类最多只能存活一天；含量水平为 6000 mg/L 时，最多能存活一周；若每天做短时间搅拌，使沉淀的淤泥泛起，保持悬浮物质达到2300 mg/L，则鱼类能存活 3～4 周。一般认为，在悬浮颗粒物含量为 200 mg/L 的水体中鱼类等水生生物不会直接死亡，而悬浮物浓度大于 125 mg/L 时会对鱼类产生一定的影响。通常认为，由于鱼类的活动能力较强，施工作业对其的影响更多表现为“驱散效应”，使鱼类远离施工现场。工程完成后，原有的鱼类资源及其生息环境不会有太大的变化，工程建设对鱼类种类、数量影响小，故施工期的不利影响范围和程度较小；② 施工机械和车辆冲洗的排放的含油废水等对藻苲沉淀水生生物的影响；③ 沟壕疏通、深泓开挖、底泥疏浚和滩涂地形营造造成生活在其中的水生生物的直接损失；④ 沟壕疏通、深泓开挖、底泥疏浚和滩涂地形营造等施工过程中的施工机械产生的噪声，对藻苲沉淀水生生物的影响。

施工对陆生动物的影响主要为施工人员及施工机械设备的噪声会对陆生脊椎动物取食、繁殖等造成影响；施工动土及对植被的破坏，以及施工噪声将影响这些动物的栖息，可能会使其在施工期迁移至环境适宜的生境；施工场地周围人为活动频繁，这会对该区域内的鸟类的生活和取食环境造成影响，这些影响变化也将迫使占地区域鸟类离开原来的领域。

3.7 营运期主要污染源

本工程为淀区生态修复工程，营运期不外排污染物，显然工程投产后具有较大的社会效益与环境效益。

工程投产后，会有一定量的水生植物枯叶与水生动物残体，但其产生量较少，水生植物枯叶与水生动物残体可通过打捞后运至饲料厂或垃圾处理站处理。

本工程用地共 8100 亩，全部为临时用地，其中涉及水田 1590 亩、旱地 1200 亩、
荷塘 4560 亩；其他土地（水塘、围堤等）750 亩。工程建设会清除部分地表土壤与底泥，土壤与底泥中的部分营养物质与重金属被水淹没浸泡后会慢慢溶解释放在水相中，可能存在水相水质劣化的环境风险。

3.8 工程建设方案环境合理性分析

3.8.1 工程建设必要性

a) 是贯彻落实党的“十九大”精神及生态文明建设，响应国家生态环境保护政策的需要。

党的十九大提出坚持人与自然和谐共生，建设生态文明是中华民族永续发展的千年大计，必须树立和践行绿水青山就是金山银山的理念，坚持节约资源和保护环境的基本国策，坚定走生产发展，生活富裕，生态良好的文明发展道路，建设美丽中国。党的十八大提出树立尊重自然、顺应自然、保护自然的生态文明理念，扩大森林、湖泊与湿地面积，保护生物多样性。中央全面深化改革领导小组第十九次会议也明确提出建立湿地保护修复制度，实行湿地面积总量管理，严格湿地用途监管，推进退化湿地修复，增强湿地生态功能，维护湿地生物多样性。《中共中央办公厅、国务院办公厅印发的《关于划定并坚守生态保护红线的若干意见》(厅字〔2017〕2 号)》明确提出：以改善生态环境质量为核心，以保障和维护生态功能为主线，按照山水林田湖系统保护的要求，划定并坚守生态保护红线，实现一条红线管控重要生态空间，确保生态功能不降低、面积不减少、性质不改变，维护国家生态安全，促进经济社会可持续发展。建立湿地保护修复制度，全面保护湿地，强化湿地利用监管，推进退化湿地修复，提升全社会湿地保护意识，为建设生态文明和美丽中国提供重要保障。由此可见，开展湿地治理与保护是实现人水和谐的具体要求。

白洋淀是华北平原最大的淡水湿地生态系统，具有蓄洪滞沥、生态涵养、生产生活和休闲游憩等多元功能，被誉为“华北之肾”，在区域生态安全体系中具有非常重要的地位。芦苇区位于白洋淀西侧，是白洋淀西大门。开展芦苇区退耕还淀生态湿地修复项目，做好与府河河口湿地净化工程和府河河道综合治理有机衔接，共同保障白洋淀淀区水质，削减淀区内源污染负荷，逐步恢复白洋淀健康湿地生态系统，重现荷塘苇海生态风貌，是新区树立和践行绿水青山就是金山银山理念，统筹山河林田淀系统治理，实现最严格生态环保制度，贯彻“人与自然和谐共生”要求的切实需要，是白洋淀生态环境治理与保护的重要内容，是全面落实国家治水方略相关政策的具体体现。
b) 是改善雄安新区生态环境，促进新区绿色宜居新城建设的需要。

设立河北雄安新区是以习近平同志为核心的党中央深入推进京津冀协同发展作出的一项重大决策部署。习近平总书记指出，采用现代信息、环保技术，将雄安新区建成绿色低碳、智能高效、环保宜居且具备优质公共服务的新型城市。

为了实现新区发展目标，《白洋淀生态环境治理和保护规划（2018-2035 年）》明确要求做好白洋淀生态环境保护，恢复“华北之肾”功能。通过实施白洋淀生态修复，逐步实施退耕还淀，恢复淀泊水面，淀区逐步恢复至 360km² 左右；实现水质达标，优化流域产业结构，加强水环境治理，坚持流域“控源—截污—治河”系统治理，确保入淀河流水质达标，将白洋淀水质逐步恢复到 III～IV 类；开展生态修复，利用自然本底优势，优化淀区生态格局，对现有苇田荷塘进行微地貌改造和调控，修复元生水，展现白洋淀荷塘苇海自然景观。

雄安新区是北京非首都功能疏解的承载地，要建设成为高水平社会主义现代化城市，京津冀世界级城市群的重要一级，现代化经济体系的新引擎，推动高质量发展的全国样板。规划对新区第一个发展定位就是绿色生态宜居新城区，藻荀淀作为白洋淀的重要组成部分，紧靠雄安新区起步区，区位优势明显。因此，应按照高点定位的基本原则，全面实施藻荀淀退耕还淀生态湿地恢复工程，削减内源污染负荷，改善入淀水质，逐步恢复湿地生态系统，重现荷塘苇海的白洋淀特色湿地景观风貌，支撑新区建成绿色生态宜居城。

c) 是落实白洋淀生态环境治理和保护规划，恢复白洋淀湿地生态系统的需要。

近年来，新区及上游地区开展了大量的白洋淀生态环境治理与保护工作，包括污染源治理、生态修复等，入淀河流和白洋淀主淀区的水质和生态状况明显改善，但距离《白洋淀生态环境治理和保护规划（2018-2035 年）》和《白洋淀流域治理实施方（2018～2020 年）》和《河北省碧水保卫战三年行动计划（2018-2035 年）》提出水质和生态目标要求存在较大差距，治理的压力较大。藻荀淀作为白洋淀重要组成部分，是白洋淀常年有水入淀河流之一府河的入淀区域，是白洋淀重要的组成部分和生态屏障，对于改善白洋淀主淀区水质和保障湿地生态安全具有重要作用，但是由于有区域水资源不足、污染较重、围垦造田严重等，导致区域水动力不足、水质恶化、生境退化、生物多样性急剧降低等。

《白洋淀生态环境治理和保护规划（2018-2035 年）》提出推进淀区退耕还淀，
恢复生态水位，扩增淀泊水面，加强生态修复，到2022年淀区水质现有考核断面水质满足III~IV类标准，生态功能显著增强，生物多样性明显提高，生态环境管理体制机制基本完善。

白洋淀生态环境治理是一项复杂的系统工程，与社会经济发展的各个方面联系密切，白洋淀生态环境治理目标的实现不但需要必要的工程措施，需要从白洋淀流域角度考虑，对入淀河流及淀区进行系统治理。针对现状南刘庄断面水质及白洋淀水质净化需求，省委省政府提出拟在藻苲淀统筹实施府河入淀口湿地水质净化工程、藻苲淀退耕还淀生态湿地恢复工程和府河新区段河道综合治理工程等项目。其中，府河入淀口湿地水质净化工程主要功能是净化入淀水质；藻苲淀退耕还淀生态湿地工程主要是通过退耕还淀，恢复淀区水动力条件和湿地生态系统，兼顾淀区自净和水质提升功能；府河新区段河道综合治理工程主要是恢复河道生态和自净功能，保障河床行洪能力，并为湿地工程提供调控配水作用。三个工程有机衔接，共同保障淀区生态恢复和淀区国控断面水质达标。

藻苲淀是白洋淀生态恢复重点区域，也是南刘庄断面水质是否能够达标的主要影响因素之一。因此，开展藻苲淀退耕还淀生态湿地恢复工程，改善淀区水动力条件，扩增淀泊水面，进一步净化府河河口湿地出水和入藻苲淀河流来水，逐步恢复淀区生态系统，营造白洋淀特色湿地景观，是实现淀区水动力改善、湿地生态系统恢复和重现荷塘苇海白洋淀特色生态湿地景观风貌的迫切需求，也是白洋淀生态环境治理和改善的长效举措。

d) 是研究白洋淀退耕还淀生态湿地恢复关键技术，探索白洋淀退耕还淀模式的需要。

《白洋淀生态环境治理和保护规划（2018-2035年）》提出在白洋淀内逐步实施退耕还淀，恢复生态水位、扩增淀泊水面，将水位波动过程中消落区的稻田、旱地逐步修复为湿地，恢复淀区生态系统完整性。同时综合淀泊连通性恢复、水动力改善，淀区生态治理，淀泊风貌保护等方面要求，有序清理外围围埝。

目前，国内外针对不同湖泊面临的水面萎缩、湿地退化、水质污染、生物多样性降低等主要生态环境问题，先后开展了美国佛罗里达大沼泽、巢湖、洱海、洞庭湖、微山湖、骆马湖、乌梁素海等湖泊退耕还湿工程，针对不同区域主要生态环境问题（包括沼泽化、水质富营养化、物种退化、景观单一化等），提出大量的生态修复措施，
包括水质控制、水文恢复、植被恢复、地形营造、生态恢复等，出版大量的生态修复报告，包括《The Everglades Experiments Lessons for Ecosystem Restoration》、《Wetland Restoration Spatial Decision Support System》、《Wetland Restoration, Enhancement, and Management》、《Wetlands Engineering Handbook》、《Handbook for restoring tidal wetlands》等，其中美国佛罗里达大沼泽在湿地生态修复过程中，委托第三方定期出版生态恢复成效评估报告《Progress Toward Restoring the Everglades》，全面分析实施工程的生态恢复效果与预定目标的差距及主要影响因素，进一步指导下一阶段的生态恢复战略及生态恢复措施，初步形成一套湿地生态恢复的适应性管理模式。由于湿地生态系统的复杂性以及边界条件的影响，尚未形成一套类似于人工湿地的生态修复技术导则和设计规范，主要与区域地形地貌、生态环境问题、修复目标等因素关系密切，多数均是在处于不断的摸索和实践中。

白洋淀生态环境退化是在长期的社会经济发展胁迫下逐步造成的，涉及水质污染、生境退化、生态退化等生态多重环境问题，影响因素包括水污染污染、水资源不足、生境退化等，上述影响因素相互联系、错综复杂，需要统筹考虑区域水文条件、地形条件、水质目标、生态恢复等。国家在白洋淀开展大量的研究工作，包括国家十一五水专项“白洋淀草型富营养化和沼泽化逐级治理技术与工程示范课题”、“白洋淀流域生态需水保障及水生态系统综合调控技术与集成示范”，十三五水专项“白洋淀与大清河流域（雄安新区）水生态环境整治与水安全保障关键技术研究与示范”项目等，在白洋淀水生态系统逐步恢复技术、草型湖泊富营养化与沼泽化防治技术、生态节水技术、入淀水量多目标保障技术以及流域“节水-控源-净淀-调控”一体化关键技术等取得重要进展。由于白洋淀区土地利用类型复杂，鱼塘、荷塘、农田等污染程度不一，围堤围埝纵横交错，恢复目标（污染源治理、水质改善、生态恢复）要求高，现有国内外退耕还淀模式无法直接复制，加之白洋淀近年通过南水北调、引黄入冀补淀、府河及瀑河补水等工程大量补水，使得现状的白洋淀水量、水文情势等与前期研究存在较大的差异，需要基于白洋淀生态恢复目标及现有环境基础条件，开展藻苲淀退耕还淀生态湿地恢复项目，提出高效退耕还淀技术方案，形成适合于白洋淀区域大规模退耕还淀模式，为全淀大范围实施退耕还淀提供技术支撑。

e) 是挖掘白洋淀生态价值，打造“绿水青山就是金山银山”全国样板的需要

白洋淀是华北地区最大的淡水湖泊，是华北地区重要的自然生态系统和自然资源，
承担着大气调节、缓洪滞沥、维持生态系统完整性等生态服务功能，鱼、苇生产等重要资源功能、教学科研和旅游的人文功能，在维护华北地区生态安全体系、保障白洋淀周边居民生产、生活等方面具有战略性地位，保护好并利用好白洋淀是实现新区高质量发展的基本要求。

在开展藻苲淀退耕还淀生态湿地恢复时，充分挖掘白洋淀生态价值，助力加快芦苇资源化利用、生态旅游等生态产业的发展，生态恢复、景观恢复过程中需要考虑区域特有的、独特的水生高价值经济作物、自然景观，让生态产品生产者切身感受到生态产品产生产的社会价值，探索出一条实现“绿水青山就是金山银山”的路子，可复制可推广，也为白洋淀大规模退耕还淀提供模式，打造“绿水青山就是金山银山”的全国样板。

3.8.2 建设方案环境合理性

整个建设方案分水系疏导、内源污染净化、健康湿地工程、智慧湿地工程区别设计。

a）水系疏导

工程区总体水流规划以地势为主线，分地势较高、中等与较低3个区域，分别提出不同的水系疏导方案：1）藻苲淀西南及北侧萍河以东区域高程多在7.0m以上，采用明渠导流和水系连通方式，利用或改善现状水渠，连同各片区沟渠水系，保证水系畅通。即：地势较高区域，以导为主，以蓄为辅。2）藻苲淀西部、南部及部分工程范围边缘地区，高程基本处于6.5m~7.0m之间，区域以多支分流形式，拆除圩堤围埝，重组现状圩堤围埝结构及沟渠，形成干湿片区，满足基本的生态水动力条件。即：地势中等区域，以蓄为主，以导为辅。3）藻苲淀中部、北部、东部等大片地区高程多在6.5m以下，区域以迂回导流形式，打断、削低圩堤结构，疏通沟渠水系，并且保留天然水道，以此减少水体滞留时间，增加水体自净能力，以满足生态植被分布水动力条件。即：地势较低区域，以疏为主，以导为辅。基于藻苲淀5条主水流的规划布局，对2号、3号和4号水流布局水细化，提出2-1#、2-2#、2-3#、3#、4#共5条水流规划，见图3.11.2-1，可改善一期工程范围水动力条件和满足区域湿地生态需水需求。

水系整体为南北走向，对现状内部水系进行疏通、整理，形成三级水道。其中4条一级水道（顶宽10~20m）、5条二级水道（顶宽5~10m），若干三级水道（顶宽
1~5m），将府河入淀口湿地水质净化工程出水引入藻苇淀淀区，详见图 3.11.2-2。为更好的疏通水系，拟对现有的不利于水流的围堤围埝进行拆除，即：垂直流向的围堤围埝拆除至常水位以下 50cm；平行于流向的围堤“余段成洲、随行就势”；围堤围埝拆除实行 “堤塘协同设计，先塘后堤有序开展”，见图 3.11.2-3。

图 3.8.2-1 藻苇淀一期水道设计方案示意图
图 3.8.2-2 藻苂淀一期围堤围埝拆除设计方案示意图

b) 内源污染净化

内源污染净化工程设计坚持水质保护优先、泥水协同、精准勘测，分类施策的治理原则，设计的建设内容包括存量污水处理、底泥清理、表层土壤生态治理。存量污水处理方案是结合淀内水质现状分别提出处理方案：针对Ⅳ类及Ⅳ类以上的存量水，通过围堤拆除进入淀区；针对 V 类水质的存量水，通过水生植物净化，满足Ⅳ类水质后进入淀区；针对劣 V 类水质的存量水，通过台田根孔净化系统净化达到Ⅳ类水质标准后排入淀区（超磁分离一体化处理作为应急手段）。并优先建成芦苇台田湿地区，作为存量污水湿地净化区。将芦苇台田区分 3 为区域（①、②、③），中间用围堰隔离：将①区存水污水泵抽到②区，开展①区芦苇台田施工；①区建成后，将②区存量污水泵抽到①区，利用台田根孔湿地净化系统进行水质净化，达标排放；同步进行②区芦苇台田湿地区建设；依次进行③区和④区存量水处理和相应区域湿地建设，详见
该方案优先建成芦苇台田湿地区，作为存量污水湿地净化区，而且针对水质劣化高风险区域，将其上覆水抽到水质类别相同的独立水域（IV及IV类以上水质直接排入淀区），通过干式施工方式进行底泥清理；清理的底泥原位置进行生态滩涂构建，内部消纳底泥方量，控制底泥氨磷释放，兼有水质净化、优化景观格局的多重效益。针对中—高风险的土壤，通过表土清理、台地营造+搭配种植芦苇等本土植物，实现表土净化。针对无—轻度风险的土壤，通过植物修复的方式，实现表土净化。
c) 健康湿地工程

工程按照用地范围内的生态功能分区，分别针对4种湿地类型典型地形特征，遵循最小干预原则，充分利用现有地形肌理，进行多样化湿地生境改造，可为工程范围内健康生态系统建立提供良好的基础地形条件。

在沟壕湿地功能区，依照现有地形及农田肌理进行适量疏导、开挖，形成沟壕相间、水网散布的生境骨架，满足工程范围各斑块生态补水。营造断面形式多样的水道形态，利用剩余土方塑造高地微地形，形成丰富的水下、水路交错带、高地地形，为健康湿地恢复提供良好的生境条件。在此基础上基于各湿地类型健康生态系统的分析与目标恢复物种的选择，针对性的植被物种恢复、栖息地微地形整理优化以及鱼类、底栖等动物物种的投放。动植物恢复物种选择时分不同功能区的台地、水道与岸坡分别种植不同的植物，科学合理。如：台地——保留原有乔木，主要种植芦苇，搭配种

图 3.8.2-4 藻苇淀一期存量污水处理设计方案示意图
植低矮的湿生草本，如酢浆草、苔草等；生态河道——一、二级河道内布置浮叶植物，投放水质净化能力强的底栖动物；岸坡——种植芦苇、香蒲等挺水植物，形成生态护岸。

在季节性草本沼泽功能区，依照现有河网肌理进行湿地水道疏通，形成三级季节性淹没水道，利用剩余土方塑造高地微地形，形成丰富的水下、水路交错带、高地地形，为健康湿地恢复提供良好的生境条件。动植物恢复物种选择时配置以下物种：草本沼泽——种植水芹、菰等，搭配部分小泽泻、水蓼等伴生景观物种；生态河道——一、二级河道内布置多种浮叶植物和沉水植物，投放滤食性鱼类，投放水质净化能力强的底栖动物；岸坡——种植芦苇、香蒲等挺水植物，形成生态护岸。

在草本滩涂湿地功能区，通过适宜打断现状塘埂，营造良好的水动力条件；通过生态滩涂锁定底泥释放，同时营造生境丰富的缓坡水陆交错带，丰富交错带水深变化；现状废弃水稻田通过微地形改造，形成洋荡片特色条状苇海台田形态景观。草本滩涂——滩涂水陆交错带依据水深条件种植香蒲、菰等；面积较小的保留光滩：沿岸布置苔草、纸莎草等湿生草本；滩涂周边水域配置浮叶植物形成特色浮叶植物群；苇海台田——种植芦苇，形成苇海台田景象。

在湖泊湿地功能区，通过适宜打断现状塘埂，营造良好的水动力条件；进行湖泊湿地荷花抽稀及深泓开挖，形成湖泊湿地地区主流通道，营造大面积深水水域，丰富水下地形的同时，给水鸟提供良好的栖息场所；配置多处人工鱼巢，为鱼类提供良好栖息场所，并对原有荷塘抽稀，形成较大规模的开敞水面，防止荷花连片生长；深泓边缘搭配浮叶植物；水下配置沉水植物，构建水下森林生态系统。同时投放螺贝类底栖、多食物网层级鱼类。

建设方案还在分析不同鸟类与鱼类生境需求的基础上，提出了拟恢复的鱼类种群：鲢鱼、鳙鱼、鳜鱼、黄颡鱼等。

综合这4种湿地的生态治理与恢复方案分析得出，各自然湿地区通过营造沟壕、芦苇台田、草本沼泽、草本滩涂、芦苇台田、深泓等生境，营造有利于水体自净能力提升、鸟类和鱼类栖息觅食的丰富自然湿地地形，方案的实施有利于改善淀内水动力条件，从而改善原有的存量污水水质，不同生境的营造有利于缓解土壤与底泥营养物质释放对水质的劣化影响，同时还有利于涉禽、游禽等不同类型鸟类栖息地的修复，进而丰富湿地生态系统的物种多样性。
3.8.3 施工组织方案的环境合理性

藻苲淀是白洋淀的子淀区，属于白洋淀西大门，白洋淀的水位情况直接影响藻苲淀的施工方案选择。藻苲淀工程一期位于华北平原，地形起伏不大，地形标高一般在5.50m～7.50m，现状地表多为藕塘、鱼塘、芦苇荡、稻田以及麦田等。藻苲淀工程一期区域靠南面的高高程区用于集中布置施工营地、综合仓库、机械设备停放场和物资堆放场等施工场地，布置面积约5000m²。叠加施工营地选址与白洋淀湿地自然保护区功能分区图得知，该施工营地位于实验区，不涉及核心区与缓冲区。叠加白洋淀国家级水产种质资源保护区规划图得知，施工营地不涉及其核心区与实验区，整个施工区只涉及其非养殖区。施工期各类施工机械车辆保养维修拟委托乡镇和县城内的厂家进行，可减少工程用地环境影响。

整个工程区域分为4个功能分区，分别为沟壕湿地区、季节性草本沼泽区、草本滩涂湿地和湖泊湿地区，征地区从南到北总体分三个施工区：一施工区自然干地施工，二施工区抽水干地施工，三施工区水中作业。三个施工区现状见图3.11-2~图3.11-7。

![工程一期施工分区图](attachment:image.png)

图 3.8.3-1 工程一期施工分区图
本工程沟壕疏通主要在第一施工区内进行，主要涉及沟壕湿地、季节性草本沼泽湿地及草本滩涂湿地区域的南部区域。一施工区现状在每年的6月初～10月底基本处于干地状态，这个时段满足自然干地施工要求。该施工区周边245m内无居民点分布，施工区西南面30m处有一文物保护单位“燕太子丹送别荆轲处”石牌也不会受到施工影响。

本工程内源污染净化施工主要在第二施工区内进行，主要涉及草本滩涂湿地区域的北部区域。

荷塘抽稀和深泓开挖施工主要涉及湖泊湿地所在的第三施工区，三施工区区域内高程较低（约5.5～6.0m），范围大（约144万m²），周边围壩高程一般在6.7～7.5m左右，现状常年有水，水深约平均约1.0m，主要是因为围壩局部被打断，造成区域内部与周边水系连通，导致区内处于淹没状态。
图 3.8.3-3 2020 年 2 月一施工区现状影像图

一施工区现状处于半淹没半干地状态

图 3.8.3-4 2019 年 11 月二施工区现状影像图

二施工区现状为全淹没状态
图 3.8.4-5 2020 年 2 月二施工区现状影像图

图 3.8.4-6 2019 年 11 月三施工区现状影像图
工程功能分区与 3 个施工区结合土地利用现状与地形、水文条件规划设计，从环境保护角度分析比较合理。

工程施工区除施工人员生活用水外，不新增生产用水，各施工区作业产生的废水（施工抽水总量约 183 万 m³，其中估算前期一施工区内存水量约 27 万 m³，一施工区和二施工区在施工过程中降雨及渗水的抽排量约 156 万 m³）视水质现状是否达到地表水环境质量标准 IV 类标准区别处理，达标废水就近排放至施工区南面与西面的白洋淀湿地自然保护区实验区水沟内，不满足 IV 标准的拟采用达标处理措施后排放。施工营地的生活污水拟采用化粪池处理后外运到周边乡镇回灌农地，不排放入淀。

工程地处平原又属于白洋淀湿地生态区域，覆盖层厚，均为土方开挖，周边基本农田多，因此施工组织设计利用场地自身范围宽广、地势平坦等特点，结合工程治理措施方案，做到在工程区域内自身土方挖填平衡，不外运弃土。

本工程沟壕疏通开挖总共约 37.24 万 m³，其中清淤约 4.67 万 m³，粘土开挖约 32.56 万 m³，淤泥就近摊铺于水系两侧，粘土大部分调运往二施工区用于滩涂地形营造的表面覆盖，部分用于台田营造，剩余部分用于表土置换。深泓开挖约 16.47 万 m³，就近摊铺于泓沟两侧。围埝拆除约 6.83 万 m³，分别用于地形营造和就近摊铺处理。高风险土壤清理约 19.09 万 m³，全部就近用于台田地形营造。底泥清淤约 25.88 万 m³，全部就近用于滩涂地形营造。因此不存在外延弃土对地方居民生产生活的影响。

综上分析得出，本工程施工组织设计方案布置合理。
4. 环境现状调查与评价
4.1 自然环境概况
4.1.1 地理位置

雄安新区地处北京、天津、保定腹地，距北京、天津均为 105km，距石家庄 155km，
距保定 30km，距北京新机场 55km。区位优势明显，交通便捷通畅，地质条件稳定，
生态环境优良，资源环境承载能力较强，现有开发程度较低，发展空间充裕，具备高
起点高标准开发建设的基本条件。

图 4.1-1 雄安新区地理位置图

白洋淀位于雄安新区境内，由藻苲淀、马棚淀、腰葫芦淀等 143 个大小不等的淀泊组成，
是华北平原最大、最典型的淡水浅湖型湿地，被誉为“华北之肾”，总面积
360km²。

藻苲淀位于河北省雄安新区安新县寨里乡以东，安州镇以北，总面积约 50km²，
约占白洋淀淀区总面积的 1/7，主要由现状藻苲淀和河口区域组成。其中藻苲淀包括
藻茟淀、鸪丁淀、城北淀、大白淀等大小子淀泊。藻茟淀主要有府河、漕河、瀑河、萍河等4条入淀河流汇入，其中府河常年有水。

本次工程为藻茟淀退耕还淀一期工程，西部与府河河口湿地边界接壤，东部以进村道路向西约500m为边界，北部以主水道为边界（包含主水道），南以府河河道向北约450m为边界，设计面积约为5.4km²。地理位置如图4.1.1-1~3。
图 4.1.1-2 藻苇淀在白洋淀区位

图 4.1.1-3 一期工程区在藻苇淀区域位置图
4.1.2 地形、地貌、地质

a）区域地形地貌

雄安新区位于太行山以东平原区，地势由西北向东南逐渐降低，地面高程多在5m～26m，地面坡降小于2‰。

白洋淀位于华北平原北部，雄安新区中南部，太行山东麓永定河冲积扇和滹沱河冲积扇相夹峙的低洼地区。藻苲淀为白洋淀的组成部分，是白洋淀内万亩以上的七个大淀之一，位于刘台、寨里、安州三个乡镇之间，藻苲淀水域构造独特，河淀相连，沟壕交错，水村园田星罗棋布，局部沿边筑堤围埝，堤内洼地连片，堤外淀水荡漾，形成了半水半旱的独特地理特征。

本项目工程区位于藻苲淀西部，地形平坦、开阔，地势较低，地面高程多在5m～7m，局部地区地面高程低于5m。现状土地利用类型主要包括荷塘、鱼塘、稻田以及麦田等。

b）高程分析

一期工程区域整体地势总体较缓，地形南高北低。高程6.5m以下区域主要为北部的荷塘和稻田，总面积约3.12km²，约占53.11%；高程介于6.5～7m的区域主要为中部的旱地和稻田，面积为1.62km²，约占27.62%；高程在7m以上区域主要为南部的旱地，面积为1.13km²，约占淀区19.27%。
4.1.3 水文
4.1.3.1 气象、气候

本项目一期工程范围位于白洋淀地区，本区域属于温带半干旱大陆性季风气候区，四季分明，温度适中。春季干旱少雨多风；夏季受海洋气团控制，常为北太平洋副热带高压和印度洋低压影响，炎热多雨；秋季天高气爽；冬季受欧亚北方冷空气影响，常为蒙古冷高压控制，盛行由大陆吹向海洋的冬季风，寒冷少雪。绝对温差变幅较大，多年平均气温 12.1℃，最热为 7 月，月平均气温 26.4℃，极端最高气温 40.7℃，最冷为 1 月，月平均气温 -4.7℃，极端最低气温 -26.7℃，无霜期 203 天。

区域土壤冻结期一般在 12 月上旬至 3 月上旬，冻土深度多年平均 42cm，最大冻土深 55cm；白洋淀内初冰期在 11 月末，冰期至翌年 3 月中旬，冰厚 0.19~0.42m。多年平均日照 2638 小时，年平均日照百分率为 60%。年平均相对湿度 66%，最

大湿度为 75%，最小湿度 62%。冬、秋季节多雾，年平均大雾日数 16.1 天。年主导风向为西南风，频率为 11%，其次为东北风，频率 9%，年平均风速 2.4m/s，最
大风速 25.0m/s。

4.1.3.2 径流

a）天然径流量

藻苲淀主要有 4 条支流汇入，分别是萍河、府河、漕河和瀑河。经计算，萍河、府河、漕河、瀑河天然年径流量分别为 443 万 m³、643 万 m³、891 万 m³、650 万 m³。

b）白洋淀补水量

从 2004 年开始对白洋淀实施外调水源至今，近 10 年白洋淀实际蓄水量在 0.6 亿 m³至 4.38 亿 m³之间，正在逐步缓解白洋淀水资源量短缺的局面。

2020 年计划向白洋淀补水约 4.0 亿 m³，其中，引黄河水量约 2.0 亿 m³、引南水北调水量约 0.97 亿 m³、引水库及再生水量约 1.03 亿 m³。

c）藻苲淀补水量

入淀河流中，仅府河常年有水入淀，主要是承接上游保定市污水处理厂尾水和沿途直排废水，实际入淀水量约 25 万 t/d，年入淀水量 9125 万 t。

2018 年 4 月~7 月，西大洋水库和王快水库通过府河向白洋淀生态补水，白洋淀收水约 4984 万 m³。2018 年 5 月~7 月，南水北调工程分别利用府河及瀑河，对淀区实施生态补水，藻苲淀收水分别为 1328.9 万 m³、1800 万 m³。

d）府河入淀水量

府河为季节性河流，目前自然基流已经基本消失，平时水源以上游保定市污水处理厂尾水和农田退水为主，雨季有部分降雨补给，近年来，为保障淀区生态用水，相机从上游水库放水进行补给。

根据安新县水利局监测数据显示，2017 年 5 月 1 日~7 月入淀总水量 3754.9 万 m³，日均入淀水量 42.7 万 m³，日入淀水量介于 17.3~155.5 万 m³。2018 年 1 月 1 日~8 月 21 日入淀总水量 8179.5 万 m³，日均入淀水量 35.1 万 m³，日入淀水量介于 6~127 万 m³。

4.1.3.3 蒸发

本工程区域蒸发采用保定市 1981-2000 年 20cm 蒸发皿观测成果统计，根据 1994 年 6 月《河北省水面蒸发研究报告》提出的水面蒸发折算系数，本工程区域多年平均水面蒸发 1024.7mm。
4.1.3.4 地下水

安新县地下水资源比较丰富，水质良好，水质为重碳酸钙镁钠型，pH 值范围 7.0～8.2，矿化度 0.32～5.51g/L，总硬度 11～22。一般地下水埋深 2～4m，部分区域 1m 以下即可看见水，由于近年干旱，水位有所下降，多年平均开采量为 0.322 亿 m³。

4.1.5 社会经济

安新县设 9 镇 3 乡，共 12 个乡镇，207 个行政村。城镇居民人均可支配收入 18466 元，农村居民人均可支配收入 10199 元。本工程选址设置府河河口湿地东部，瀑河入淀口附近区域，设计面积约为 5.4km²，工程用地涉及区域涉及寨里乡、安州镇两个乡镇，西部与府河河口湿地接壤，东部以北何庄村进村道路向西约 500m 为边界，北部以主水道为边界（包含主水道），南以府河河道向北约 450m 为边界。

安新县产业结构包括工业、农业及旅游产业。其中，工业产业包括有色金属加工业（具有集回收、电解、线缆加工、精密仪器制造于一体的完整产业链）、制鞋业及羽绒业；农业产业包括养鸭（包括种鸭养殖、鸭雏孵化、鸭蛋加工、羽绒加工、鸭产品销售于一体的产业发展格局）、水产养殖（包括河蟹、草鱼、鳙鱼、鲢鱼四个无公害产品）以及芦苇加工为主的特色农业经济结构；旅游产业依托白洋淀特有的资源优势，立足京津客源市场，大力开发生态游、文化游、民俗游、红色游，统筹推进“吃、住、行、游、购、娱”旅游六要素协调发展，相继开发建成了旅游码头、荷花大观园、白洋淀文化苑等一大批旅游基础设施和精品景点。

白洋淀有悠久厚重的生态文化、历史文化、革命文化。白洋淀生态独特，形态特殊。366 平方公里的水域内 143 个淀泊星罗棋布，3700 条沟濠纵横交错，39 个小岛点缀其中，10 万亩荷塘接天映日，12 万亩芦荡密密丛丛，既有浩浩荡荡的雄魄又有水路相间的灵秀，造就了独特的自然风貌和人文景观。淀内的鱼、虾、蟹、贝、莲藕等水生植物资源丰富，是鱼的乐园、鸟的天堂、水生动植物的博物馆。

白洋淀文化底蕴深厚历史悠久。白洋淀自古即是帝王巡幸驻跸之所，英雄辈出之地。早在新石器时代就有先民在此繁衍，春秋战国时期，燕国在此修筑了长城，北宋名将杨六郎曾在此屯兵驻守，大败韩昌；康熙、乾隆两位皇帝先后 40 余次游览白洋淀，并修建四所行宫，留下了脍炙人口的诗文。

白洋淀革命文化灿烂。白洋淀是革命老区，闻名中外的雁翎队利用有利地形驱船为马，投竿当枪神出鬼没出入莽莽芦荡、辗转茫茫大淀谱写了一曲白洋淀人民抗日救
国的英雄赞歌：著名作家孙犁先生的《白洋淀纪事》奠定了我国文坛“荷花淀”文学流派的基调；孔厥、袁静的《新儿女英雄传》、徐光耀的《小兵张嘎》等优秀文学乡土气息浓厚，时代特色鲜明成为我国现代文学发展史上一道绚丽的景观。

白洋淀是国家五 A 级旅游景区，地处京、津、石腹地，总面积 366 平方公里，位于河北省中部安新县境内，是华北地区最大的淡水湖泊，著名的湿地自然保护区，昔有“北地西湖”之称，今有“华北明珠”之誉，诗赞“北国江南”歌咏“鱼米之乡”，是中华大地上一颗璀璨的明珠。

白洋淀把旅游开发主题定位在文化挖掘上，以文化“魂”、以“特”取胜进行景区建设，共开发了白洋淀荷花大观园，白洋淀文化苑，白洋淀异国风情园，白洋淀嘎子印象、白洋淀宝岛、白洋淀元妃荷园、鸳鸯岛等 8 个精品景点。

图 4.1.5-1 白洋淀景区风貌

4.2 环境质量现状调查与评价

4.2.1 环境空气质量现状调查与评价

区域达标判断：根据 2018 年安新县环境空气例行监测数据，SO2 年平均浓度为 21μg/m^3；NO2 年平均浓度为 34μg/m^3；PM10 年平均浓度为 98μg/m^3；PM2.5 年平均浓度为 61μg/m^3；CO95%日平均浓度为 1.24μg/m^3；O390%8h 日平均浓度为 110μg/m^3；按《环境空气质量标准》（GB3095-2012）中的二级标准进行评价，进行所在区域达
标判定。评价结果见见表 4.2.1-1。

表 4.2.1-1 区域环境空气质量现状评价表

<table>
<thead>
<tr>
<th>污染物</th>
<th>年评价指标</th>
<th>现状浓度（μg/m³）</th>
<th>标准值（μg/m³）</th>
<th>占标率（%）</th>
<th>达标情况</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO₂</td>
<td>年平均质量浓度</td>
<td>21</td>
<td>60</td>
<td>35</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>98%日平均质量浓度</td>
<td>23</td>
<td>150</td>
<td>15.3</td>
<td>达标</td>
</tr>
<tr>
<td>NO₂</td>
<td>年平均质量浓度</td>
<td>34</td>
<td>40</td>
<td>85</td>
<td>达标</td>
</tr>
<tr>
<td></td>
<td>98%日平均质量浓度</td>
<td>40</td>
<td>80</td>
<td>50</td>
<td>达标</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>年平均质量浓度</td>
<td>98</td>
<td>70</td>
<td>140</td>
<td>超标</td>
</tr>
<tr>
<td></td>
<td>95%日平均质量浓度</td>
<td>98</td>
<td>150</td>
<td>65</td>
<td>达标</td>
</tr>
<tr>
<td>PM₂.₅</td>
<td>年平均质量浓度</td>
<td>61</td>
<td>35</td>
<td>174</td>
<td>超标</td>
</tr>
<tr>
<td></td>
<td>95%日平均质量浓度</td>
<td>63</td>
<td>75</td>
<td>84</td>
<td>达标</td>
</tr>
<tr>
<td>CO</td>
<td>95%日平均质量浓度</td>
<td>1.24</td>
<td>4000</td>
<td>0.00031</td>
<td>达标</td>
</tr>
<tr>
<td>O₃</td>
<td>90%8h 平均质量浓度</td>
<td>110</td>
<td>160</td>
<td>0.69</td>
<td>达标</td>
</tr>
</tbody>
</table>

根据《环境影响评价技术导则 大气环境》（HJ2.2-2018）中“6.4.1.1 城市环境空气质量达标情况评价指标为 SO₂、NO₂、PM₁₀、PM₂.₅、O₃ 和 CO，六项污染物全部达标即为城市环境空气质量达标”，结合上表，PM₁₀ 和 PM₂.₅ 年均质量浓度均超标。因此，本工程所在区域为环境空气质量不达标区。

在距离本项目 4km 处的李庄村北侧 1 号桥和 600m 处的白庄村北侧 2 号桥设置了环境空气在线监测设施，监测因子为 PM₁₀ 和 PM₂.₅。根据 2019 年 10 月 21 至 26 日的监测结果，局部监测时段内 PM₁₀ 和 PM₂.₅ 超过《环境空气质量标准》（GB3095-2012）二级标准，超标原因可能与天气干燥、风速较大有关。

表 4.2.1-2 2019 年 10 月 21 至 26 日环境空气监测数据

<table>
<thead>
<tr>
<th>监测点位</th>
<th>李庄 1 号桥</th>
<th>白庄 2 号桥</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM₂.₅</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>130</td>
<td>115</td>
</tr>
</tbody>
</table>

PM₂.₅ ≤75 PM₁₀≤150
<table>
<thead>
<tr>
<th>监测点位</th>
<th>李庄1号桥</th>
<th>白庄2号桥</th>
<th>二级标准</th>
</tr>
</thead>
<tbody>
<tr>
<td>25日</td>
<td>8</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>26日</td>
<td>42</td>
<td>74</td>
<td>52</td>
</tr>
</tbody>
</table>

4.2.2 地表水环境质量现状监测与评价

4.2.2.1 藻苲淀内部水质状况

藻苲淀现状荷塘、稻田氮磷含量高，水质空间分布差异较大。根据2019年3月、5月和11月，2020年3月水质监测结果，藻苲淀主淀区开阔水面水质整体为地表水III类；藻苲淀西南部、西北部和湿地出口区的荷塘、鱼塘、芦苇台整体处于V~劣V类，以地表水IV类（湖库）水质标准为参照，主要超标因子为COD和总磷，最大超标倍数分别为0.58倍、8.6倍。

参考《全国湿地资源调查技术规程（试行）》中湖泊营养化程度评价方法，2019年11月份水质监测结果表明，藻苲淀水体整体为富营养，主要的限制因子为总磷、总氮。

图4.2.2-1 藻苲淀地表水监测结果图
4.2.2.2 工程区水质状况

为进一步掌握本工程区内水质状况，2020年4月开展工程区水体现状水质监测。

a）监测点位

根据现场查勘、航拍图可知，区域内主要有13块独立水域（7.2m水位情况下，仍被围堤围埝分隔，其中包含一块存量水较多的水稻田），4条主要沟渠（7.2m水位情况下）。

针对现状鱼塘、荷塘等13个相对独立封闭区域取样，各区域取样3个（四周边缘及中心）；针对沟渠水系、河流等线性水体，按照水流方向（进水口至出水口）取样。工程一期区域内部水体主要分布在北部荷塘和沟渠内。
b）监测指标

北部主水道监测断面监测指标包括：《地表水环境质量标准》（GB3838-2002）中规定的24项基本指标。

其余点位地表水监测指标包括pH、溶解氧、高锰酸钾指数、化学需氧量、五日生化需氧量、总磷（湖、库，以P计）、总氮、氨氮、电导率、氧化还原电位、悬浮物、叶绿素a、透明度等13个水质指标。

e）水质现状与评价

2020年4月工程一期范围内水质监测结果表明，13个独立水域中有2块水质为劣Ⅴ类（含水稻田）；5块水域水质为Ⅴ类；5块水域的水质为Ⅳ类；1块水域的水质为Ⅲ类。以地表水Ⅳ类水质（湖库）为评价标准，主要超标水质指标为总磷，最大超标倍数为1.5倍。工程区内部4条主要沟渠的水质监测数据表明，其中1条沟渠水质劣Ⅴ类，北部主水道为Ⅴ类，其余2条沟渠水质Ⅳ类。以地表水Ⅳ类水质（湖、库）为评价标准，主要超标水质指标为总磷，最大超标倍数为4.8倍。
图 4.2.2-4 2020 年 4 月工程区内部地表水监测结果图

表 4.2.2-1 2020 年 4 月工程一期内部水质现状评价结果

<table>
<thead>
<tr>
<th>点位</th>
<th>COD（mg/L）</th>
<th>氨氮（mg/L）</th>
<th>总磷（mg/L）</th>
<th>水质类别</th>
</tr>
</thead>
<tbody>
<tr>
<td>SZ1</td>
<td>19.88</td>
<td>0.16</td>
<td>0.14</td>
<td>V</td>
</tr>
<tr>
<td>SZ2</td>
<td>20.43</td>
<td>0.18</td>
<td>0.20</td>
<td>V</td>
</tr>
<tr>
<td>SZ3</td>
<td>24.68</td>
<td>0.16</td>
<td>0.09</td>
<td>IV</td>
</tr>
<tr>
<td>SZ4</td>
<td>25.45</td>
<td>0.16</td>
<td>0.25</td>
<td>劣 V</td>
</tr>
<tr>
<td>SZ5</td>
<td>19.71</td>
<td>0.11</td>
<td>0.04</td>
<td>III</td>
</tr>
<tr>
<td>SZ6</td>
<td>26.87</td>
<td>0.16</td>
<td>0.05</td>
<td>IV</td>
</tr>
<tr>
<td>SZ7</td>
<td>24.93</td>
<td>0.15</td>
<td>0.09</td>
<td>IV</td>
</tr>
<tr>
<td>SZ8</td>
<td>24.71</td>
<td>0.15</td>
<td>0.12</td>
<td>V</td>
</tr>
<tr>
<td>SZ9</td>
<td>23.00</td>
<td>0.13</td>
<td>0.15</td>
<td>V</td>
</tr>
<tr>
<td>SZ10</td>
<td>26.00</td>
<td>0.16</td>
<td>0.12</td>
<td>V</td>
</tr>
<tr>
<td>SZ11</td>
<td>22.67</td>
<td>0.11</td>
<td>0.09</td>
<td>IV</td>
</tr>
<tr>
<td>SZ12</td>
<td>24.67</td>
<td>0.19</td>
<td>0.04</td>
<td>IV</td>
</tr>
</tbody>
</table>
营养程度分析

根据《全国湿地资源调查技术规程》，2020年4月水质监测结果表明，所有点位的水体处于中营养水平，这可能与瀑河持续补水，来水水质较好且水量较大紧密相关。

<table>
<thead>
<tr>
<th>点位</th>
<th>COD（mg/L）</th>
<th>氨氮（mg/L）</th>
<th>总磷（mg/L）</th>
<th>水质类别</th>
</tr>
</thead>
<tbody>
<tr>
<td>SZ13</td>
<td>41.00</td>
<td>0.20</td>
<td>0.25</td>
<td>劣 V</td>
</tr>
<tr>
<td>SZ14-1</td>
<td>61.00</td>
<td>0.23</td>
<td>0.58</td>
<td>劣 V</td>
</tr>
<tr>
<td>SZ14-2</td>
<td>20.00</td>
<td>0.13</td>
<td>0.05</td>
<td>III</td>
</tr>
<tr>
<td>SZ14-3</td>
<td>18.00</td>
<td>0.12</td>
<td>0.14</td>
<td>V</td>
</tr>
<tr>
<td>SZ14-4</td>
<td>30.00</td>
<td>0.14</td>
<td>0.10</td>
<td>IV</td>
</tr>
<tr>
<td>SZ14-5</td>
<td>7.00</td>
<td>0.10</td>
<td>0.03</td>
<td>III</td>
</tr>
<tr>
<td>SZ14-6</td>
<td>18.00</td>
<td>0.19</td>
<td>0.13</td>
<td>V</td>
</tr>
</tbody>
</table>

图4.2.2-5 2020年4月工程区内部地表水富营养化评价结果图

4.2.3 底泥现状监测

4.2.3.1 藻茎底泥整体状况
根据现场查勘及相关资料分析，藻苲淀相较于白洋淀其他淀区，其污染底泥淤积厚度应属于严重淤积区域，藻苲淀部分区域底泥淤积厚度可达 0.6m 左右。底泥长期淤积，不仅降低调蓄能力，底部沉积物缺氧形成还原态，可能造成底部微生物生境破和水生态系统退化。藻苲淀淤积与上游府河沿线村落污水和高密度网箱养殖废水排放，周边旱地土壤和水田、渔塘底部底泥随地表径流汇入等因素相关。

a）重金属特征分析

根据2018年9月和2019年12月藻苲淀底泥监测数据，藻苲淀底泥重金属均低于《土壤环境质量 农用地土壤污染风险管控标准(试行)》(GB 15618-2018)污染风险筛选值。

b）氮磷有机质特征分析

目前针对底泥营养物质污染风险评价方法，国家尚未制订出统一评价标准。现有相关文献多用有机污染指数法(含有机氮评价法)和综合污染指数法。有机污染指数法(含有机氮评价法)只考虑了有机质和有机氮，而忽略了磷污染评价，无法全面评价荷塘底泥营养物质污染现状。参照加拿大安大略省沉积物质量评估指南、美国国家环境保护局湖泊沉积物污染状况的评价及相关文献调查，本工程采用综合污染指数法（内梅罗污染指数法）对荷塘底泥营养物质释放风险进行综合评价。本工程采用综合污染指数法（内梅罗污染指数法+单因子评价法）对荷塘底泥进行综合评价。综合污染指数法综合考虑了 TN 及 TP 两种营养物质影响，因此本报告采用综合污染指数评价法来评价各荷塘底泥氮磷营养盐污染现状。根据“白洋淀内源污染治理项目”成果，底泥背景值(TN)=650mg/kg，(TP)=600mg/kg。

根据2018年9月和2019年11月底泥监测结果可知，藻苲淀底泥的全氮含量变化范围为 0.1~23g/kg；全磷含量变化范围为 0.24~1g/kg。通过底泥综合污染评价指数法评价可知，除部分荷塘底泥为高风险，藻苲淀整体为氮磷释放无—轻度、中度风险。
4.2.3.2 一期工程范围内底泥现状

a）现状底泥采样与监测

2020年4月针对于藻淀退耕还淀湿地恢复工期内的水域面积，包括鱼塘、荷塘、沟渠水系进行底泥调查。底泥监测指标为底泥厚度、TN、TP、TOC、pH、III类水条件下释放通量实验（TN、TP、COD）、镉、汞、砷、铅、铬、铜、镍、锌、六六六总量、滴滴涕总量、苯并[a]芘19个指标。

1）监测布点

工程一期区域内底泥主要分布在北部荷塘内。根据航拍图解释及现场实地查勘，目前水域面积约为2.8km²，独立区域约12个（除水稻田水域）。在每个独立区域布置3个采样点（2个表层样，1个柱状样），同时藻淀主淀区、芦蒲台国控断面作为背景点位采集柱状样。表层样共24个，柱状样共14个。柱状样根据底泥泥质、颜色分三层进行检测。由于不同区域底泥污染层厚度不同，根据实际情况调整取样深度。
2）监测指标

表层样底泥监测指标为底泥厚度、TN、TP、TOC、pH、III类水条件下释放通量实验（TN、TP、COD）8个指标。

柱状样监测指标为底泥厚度、TN、TP、pH、TOC、III类水条件下释放通量实验（TN、TP、COD）、III类水条件下吸附解析实验（TN、TP、TOC、氨氮）等12个指标。

柱状样（14个柱状样）的第一层样：补充监测镉、汞、砷、铅、铬、铜、镍、锌、六六六总量、滴滴涕总量、苯并[a]芘等11个指标。

监测结果如下表。
表 4.2.3-1 2020 年 4 月工程区底泥主要理化指标监测结果

<table>
<thead>
<tr>
<th>样品名称</th>
<th>pH</th>
<th>总磷 mg/Kg</th>
<th>总氮 mg/Kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN1-1</td>
<td>8.24</td>
<td>723</td>
<td>1340</td>
</tr>
<tr>
<td>DN1-2</td>
<td>7.92</td>
<td>972</td>
<td>1233</td>
</tr>
<tr>
<td>DNZ-1A</td>
<td>7.88</td>
<td>974</td>
<td>1301</td>
</tr>
<tr>
<td>DNZ-1B</td>
<td>7.81</td>
<td>823</td>
<td>780</td>
</tr>
<tr>
<td>DNZ-1C</td>
<td>7.91</td>
<td>924</td>
<td>745</td>
</tr>
<tr>
<td>DN2-1</td>
<td>8.03</td>
<td>945</td>
<td>1103</td>
</tr>
<tr>
<td>DN2-2</td>
<td>7.95</td>
<td>879</td>
<td>3170</td>
</tr>
<tr>
<td>DNZ-2A</td>
<td>7.93</td>
<td>884</td>
<td>1102</td>
</tr>
<tr>
<td>DNZ-2B</td>
<td>8.08</td>
<td>1200</td>
<td>882</td>
</tr>
<tr>
<td>DNZ-2C</td>
<td>8.23</td>
<td>900</td>
<td>853</td>
</tr>
<tr>
<td>DN3-1</td>
<td>8.14</td>
<td>866</td>
<td>1110</td>
</tr>
<tr>
<td>DN3-2</td>
<td>8.05</td>
<td>902</td>
<td>3030</td>
</tr>
<tr>
<td>DNZ-3A</td>
<td>8.27</td>
<td>604</td>
<td>1002</td>
</tr>
<tr>
<td>DNZ-3B</td>
<td>8.37</td>
<td>1000</td>
<td>855</td>
</tr>
<tr>
<td>DNZ-3C</td>
<td>8.25</td>
<td>818</td>
<td>832</td>
</tr>
<tr>
<td>DN4-1</td>
<td>8.13</td>
<td>654</td>
<td>2930</td>
</tr>
<tr>
<td>样品名称</td>
<td>pH</td>
<td>总磷 mg/Kg</td>
<td>总氮 mg/Kg</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>DN4-2</td>
<td>8.06</td>
<td>1290</td>
<td>3130</td>
</tr>
<tr>
<td>DNZ-4A</td>
<td>8.06</td>
<td>711</td>
<td>3130</td>
</tr>
<tr>
<td>DNZ-4B</td>
<td>8.24</td>
<td>671</td>
<td>1230</td>
</tr>
<tr>
<td>DNZ-4C</td>
<td>8.35</td>
<td>662</td>
<td>758</td>
</tr>
<tr>
<td>DN5-1</td>
<td>7.89</td>
<td>848</td>
<td>1003</td>
</tr>
<tr>
<td>DN5-2</td>
<td>7.99</td>
<td>1030</td>
<td>3320</td>
</tr>
<tr>
<td>DNZ-5A</td>
<td>7.85</td>
<td>1100</td>
<td>1015</td>
</tr>
<tr>
<td>DNZ-5B</td>
<td>8.02</td>
<td>1340</td>
<td>883</td>
</tr>
<tr>
<td>DNZ-5C</td>
<td>8.13</td>
<td>870</td>
<td>752</td>
</tr>
<tr>
<td>DN6-2</td>
<td>8.26</td>
<td>816</td>
<td>2640</td>
</tr>
<tr>
<td>DN6-1</td>
<td>7.79</td>
<td>875</td>
<td>1200</td>
</tr>
<tr>
<td>DNZ-6A</td>
<td>7.82</td>
<td>1020</td>
<td>1230</td>
</tr>
<tr>
<td>DNZ-6B</td>
<td>7.76</td>
<td>854</td>
<td>789</td>
</tr>
<tr>
<td>DNZ-6C</td>
<td>8.04</td>
<td>706</td>
<td>958</td>
</tr>
<tr>
<td>DN7-1</td>
<td>8.08</td>
<td>1160</td>
<td>1430</td>
</tr>
<tr>
<td>DN7-2</td>
<td>7.95</td>
<td>586</td>
<td>2610</td>
</tr>
<tr>
<td>DNZ-7A</td>
<td>7.99</td>
<td>650</td>
<td>1500</td>
</tr>
<tr>
<td>样品名称</td>
<td>pH</td>
<td>总磷 mg/Kg</td>
<td>总氮 mg/Kg</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>DNZ-7B</td>
<td>8.21</td>
<td>650</td>
<td>950</td>
</tr>
<tr>
<td>DNZ-7C</td>
<td>8.32</td>
<td>1070</td>
<td>875</td>
</tr>
<tr>
<td>DN8-1</td>
<td>7.85</td>
<td>727</td>
<td>2620</td>
</tr>
<tr>
<td>DN8-2</td>
<td>8.4</td>
<td>682</td>
<td>1640</td>
</tr>
<tr>
<td>DNZ-8A</td>
<td>8.17</td>
<td>1050</td>
<td>2640</td>
</tr>
<tr>
<td>DNZ-8B</td>
<td>8.41</td>
<td>1180</td>
<td>2420</td>
</tr>
<tr>
<td>DNZ-8C</td>
<td>8.27</td>
<td>716</td>
<td>1020</td>
</tr>
<tr>
<td>DN9-1</td>
<td>7.98</td>
<td>446</td>
<td>1003</td>
</tr>
<tr>
<td>DN9-2</td>
<td>7.98</td>
<td>834</td>
<td>1050</td>
</tr>
<tr>
<td>DNZ-9A</td>
<td>8.06</td>
<td>1080</td>
<td>1148</td>
</tr>
<tr>
<td>DNZ-9B</td>
<td>8.18</td>
<td>810</td>
<td>1001</td>
</tr>
<tr>
<td>DNZ-9C</td>
<td>8.2</td>
<td>879</td>
<td>590</td>
</tr>
<tr>
<td>DN10-1</td>
<td>8</td>
<td>708</td>
<td>1720</td>
</tr>
<tr>
<td>DN10-2</td>
<td>7.95</td>
<td>976</td>
<td>1805</td>
</tr>
<tr>
<td>DNZ-10A</td>
<td>8.06</td>
<td>894</td>
<td>1664</td>
</tr>
<tr>
<td>DNZ-10B</td>
<td>8.38</td>
<td>608</td>
<td>1730</td>
</tr>
<tr>
<td>DNZ-10C</td>
<td>8.16</td>
<td>781</td>
<td>780</td>
</tr>
<tr>
<td>样品名称</td>
<td>pH</td>
<td>总磷 mg/Kg</td>
<td>总氮 mg/Kg</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>DN11-1</td>
<td>7.96</td>
<td>1070</td>
<td>2280</td>
</tr>
<tr>
<td>DN11-2</td>
<td>8.19</td>
<td>1060</td>
<td>2310</td>
</tr>
<tr>
<td>DNZ-11A</td>
<td>8.32</td>
<td>836</td>
<td>2180</td>
</tr>
<tr>
<td>DNZ-11B</td>
<td>8.45</td>
<td>611</td>
<td>1560</td>
</tr>
<tr>
<td>DNZ-11C</td>
<td>8.07</td>
<td>618</td>
<td>883</td>
</tr>
<tr>
<td>DN12-1</td>
<td>8.11</td>
<td>1680</td>
<td>2630</td>
</tr>
<tr>
<td>DN12-2</td>
<td>8.09</td>
<td>818</td>
<td>2730</td>
</tr>
<tr>
<td>DNZ-12A</td>
<td>8.08</td>
<td>925</td>
<td>2650</td>
</tr>
<tr>
<td>DNZ-12B</td>
<td>8.15</td>
<td>864</td>
<td>2600</td>
</tr>
<tr>
<td>DNZ-12C</td>
<td>8.12</td>
<td>434</td>
<td>852</td>
</tr>
<tr>
<td>DNZ-13A</td>
<td>8.23</td>
<td>557</td>
<td>504</td>
</tr>
<tr>
<td>DNZ-13B</td>
<td>8.68</td>
<td>577</td>
<td>424</td>
</tr>
<tr>
<td>DNZ-13C</td>
<td>8.01</td>
<td>484</td>
<td>323</td>
</tr>
<tr>
<td>DNZ-14A</td>
<td>7.98</td>
<td>754</td>
<td>369</td>
</tr>
<tr>
<td>DNZ-14B</td>
<td>8.41</td>
<td>827</td>
<td>354</td>
</tr>
<tr>
<td>DNZ-14C</td>
<td>8.64</td>
<td>623</td>
<td>345</td>
</tr>
</tbody>
</table>
表 4.2.3-2 表层底泥重金属指标监测结果

<table>
<thead>
<tr>
<th>样品名称</th>
<th>苯丙[a]芘 (mg/kg)</th>
<th>铜 (mg/kg)</th>
<th>锌 (mg/kg)</th>
<th>铅 (mg/kg)</th>
<th>镉 (mg/kg)</th>
<th>镍 (mg/kg)</th>
<th>铬 (mg/kg)</th>
<th>汞 (mg/kg)</th>
<th>砷 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNZ-1A</td>
<td><0.1</td>
<td>61</td>
<td>119</td>
<td>29</td>
<td>0.35</td>
<td>50</td>
<td>87</td>
<td>0.084</td>
<td>10.2</td>
</tr>
<tr>
<td>DNZ-2A</td>
<td><0.1</td>
<td>55</td>
<td>109</td>
<td>27.4</td>
<td>0.32</td>
<td>45</td>
<td>84</td>
<td>0.077</td>
<td>8.55</td>
</tr>
<tr>
<td>DNZ-3A</td>
<td><0.1</td>
<td>53</td>
<td>106</td>
<td>26.5</td>
<td>0.29</td>
<td>43</td>
<td>84</td>
<td>0.09</td>
<td>8.51</td>
</tr>
<tr>
<td>DNZ-4A</td>
<td><0.1</td>
<td>67</td>
<td>127</td>
<td>31.5</td>
<td>0.36</td>
<td>53</td>
<td>92</td>
<td>0.082</td>
<td>11.1</td>
</tr>
<tr>
<td>DNZ-5A</td>
<td><0.1</td>
<td>52</td>
<td>107</td>
<td>28</td>
<td>0.32</td>
<td>46</td>
<td>86</td>
<td>0.073</td>
<td>9.6</td>
</tr>
<tr>
<td>DNZ-6A</td>
<td><0.1</td>
<td>46</td>
<td>101</td>
<td>25.2</td>
<td>0.3</td>
<td>43</td>
<td>79</td>
<td>0.065</td>
<td>8.73</td>
</tr>
<tr>
<td>DNZ-7A</td>
<td><0.1</td>
<td>59</td>
<td>117</td>
<td>28.6</td>
<td>0.32</td>
<td>51</td>
<td>85</td>
<td>0.066</td>
<td>10.6</td>
</tr>
<tr>
<td>DNZ-8A</td>
<td><0.1</td>
<td>54</td>
<td>115</td>
<td>30.1</td>
<td>0.36</td>
<td>49</td>
<td>88</td>
<td>0.105</td>
<td>13</td>
</tr>
<tr>
<td>DNZ-9A</td>
<td><0.1</td>
<td>59</td>
<td>122</td>
<td>30</td>
<td>0.35</td>
<td>50</td>
<td>88</td>
<td>0.077</td>
<td>13.6</td>
</tr>
<tr>
<td>DNZ-10A</td>
<td><0.1</td>
<td>58</td>
<td>121</td>
<td>28.8</td>
<td>0.31</td>
<td>47</td>
<td>88</td>
<td>0.063</td>
<td>14.1</td>
</tr>
<tr>
<td>DNZ-11A</td>
<td><0.1</td>
<td>58</td>
<td>119</td>
<td>29.4</td>
<td>0.32</td>
<td>52</td>
<td>85</td>
<td>0.075</td>
<td>13.2</td>
</tr>
<tr>
<td>DNZ-12A</td>
<td><0.1</td>
<td>53</td>
<td>112</td>
<td>26.4</td>
<td>0.29</td>
<td>46</td>
<td>80</td>
<td>0.064</td>
<td>12.8</td>
</tr>
<tr>
<td>DNZ-13A</td>
<td><0.1</td>
<td>23</td>
<td>62</td>
<td>14.4</td>
<td>0.12</td>
<td>30</td>
<td>68</td>
<td>0.026</td>
<td>6.14</td>
</tr>
<tr>
<td>DNZ-14A</td>
<td><0.1</td>
<td>26</td>
<td>71</td>
<td>18.1</td>
<td>0.18</td>
<td>31</td>
<td>58</td>
<td>0.054</td>
<td>10.8</td>
</tr>
</tbody>
</table>

GB15618-2018 风险筛选值（pH > 7.5）

79
b) 氮磷有机质特征分析

水体中的污染物会在沉积物中富集，而在一定的水流扰动作用下沉积物会再悬浮，碳、氮磷等营养元素又会进入水体，对水体富营养化产生影响。

1) 单项指数法

依据中国土壤信息系统河北省河川湖泊中有机质含量 1.67%作为有机质的背景值；根据“白洋淀内源污染治理项目”成果，底泥背景值(TN)=650mg/kg，(TP)=600mg/kg，作为本次评价总氮、总磷的背景值。

![有机质含量图](image1)

图 4.2.3-3 一期工程底泥有机质含量

![总磷含量图](image2)

图 4.2.3-4 一期工程底泥总磷含量
综上分析，一期工程区范围内浮泥层底泥中有机质、总氮、总磷含量绝大部
分超过背景值。其中有机质最大量可达背景值的 1.13 倍，总氮最大量可达的 3.71
倍，总磷最大量可达的 0.91 倍，与藻芦淀自由淀面的表层底泥（DN13）之间存
在显著性差异。主要原因可能为荷塘长期不合理施用肥料导致，荷塘内底泥对藻
芦淀和白洋淀入淀口富营养化造成潜在的威胁。

2）综合污染指数评价法

综合污染指数评价法综合考虑了氮磷有机质的污染程度，对沉积物污染程度
进行评价。根据“白洋淀内源污染治理项目”成果，底泥背景值(TN)=650mg/kg，
(TP)=600mg/kg，作为本次评价总氮、总磷的背景值。

根据综合污染指数评价法评价结果，藻芦淀一期工程范围内 12 块独立水域
内的表层底泥中，4 块水域为营养盐释放高风险，6 块水域为营养盐释放中风险，
2 块水域为营养盐释放轻度风险，其中总氮的释放风险较总磷更高，这可能与荷
塘长期不合理施用尿素等氮肥有直接关系。
图 4.2.3-6 工程一期底泥营养物质释放风险等级分布

表 4.2.3-3 2020 年 4 月工程区内底泥综合污染指数评价结果

<table>
<thead>
<tr>
<th>点位</th>
<th>STN</th>
<th>STP</th>
<th>FF</th>
<th>评价</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN1</td>
<td>1.99</td>
<td>1.48</td>
<td>1.86</td>
<td>轻度风险</td>
</tr>
<tr>
<td>DN2</td>
<td>2.76</td>
<td>1.50</td>
<td>2.46</td>
<td>中风险</td>
</tr>
<tr>
<td>DN3</td>
<td>2.64</td>
<td>1.32</td>
<td>2.33</td>
<td>中风险</td>
</tr>
<tr>
<td>DN4</td>
<td>4.71</td>
<td>1.48</td>
<td>3.99</td>
<td>高风险</td>
</tr>
<tr>
<td>DN5</td>
<td>2.74</td>
<td>1.65</td>
<td>2.48</td>
<td>中风险</td>
</tr>
<tr>
<td>DN6</td>
<td>2.60</td>
<td>1.51</td>
<td>2.34</td>
<td>中风险</td>
</tr>
<tr>
<td>DN7</td>
<td>2.84</td>
<td>1.33</td>
<td>2.49</td>
<td>中风险</td>
</tr>
<tr>
<td>DN8</td>
<td>3.54</td>
<td>1.37</td>
<td>3.04</td>
<td>高风险</td>
</tr>
<tr>
<td>DN9</td>
<td>1.64</td>
<td>1.31</td>
<td>1.56</td>
<td>轻度风险</td>
</tr>
<tr>
<td>DN10</td>
<td>2.66</td>
<td>1.43</td>
<td>2.37</td>
<td>中风险</td>
</tr>
<tr>
<td>DN11</td>
<td>3.47</td>
<td>1.65</td>
<td>3.05</td>
<td>高风险</td>
</tr>
<tr>
<td>DN12</td>
<td>4.11</td>
<td>1.90</td>
<td>3.60</td>
<td>高风险</td>
</tr>
</tbody>
</table>
表 4.2.3-4 藻荡工程区底泥氮、磷、有机质含量与国内其他湿地比较

<table>
<thead>
<tr>
<th>湿地</th>
<th>总氮（mg/g）</th>
<th>总磷（mg/g）</th>
<th>有机质%</th>
</tr>
</thead>
<tbody>
<tr>
<td>竺山湾缓冲带内湿地</td>
<td>1.42</td>
<td>0.44</td>
<td>2.98</td>
</tr>
<tr>
<td>太湖湖滨带湿地</td>
<td>0.46～5.21</td>
<td>0.13～1.39</td>
<td>1.42～9.96</td>
</tr>
<tr>
<td>三垟湿地</td>
<td>2.5</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>白洋淀湿地</td>
<td>1.18</td>
<td>0.67</td>
<td>1.63</td>
</tr>
<tr>
<td>松花江河滨湿地</td>
<td>1.16</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>东太湖湖滨湿地</td>
<td>1.8</td>
<td></td>
<td>1.4</td>
</tr>
<tr>
<td>北湖湾北部滨海湿地</td>
<td>0.37</td>
<td>0.23</td>
<td>0.45</td>
</tr>
<tr>
<td>藻荡一期工程区（均值）</td>
<td>1.82</td>
<td>0.87</td>
<td>2.65</td>
</tr>
</tbody>
</table>

由上表可见，与国内其他湿地相比，白洋淀湿地内沉积物中的氮、磷、有机质处于较低水平，但藻荡荷塘表层底泥中总氮、总磷和有机质含量均超过白洋淀湿地内沉积物污染量，具有一定污染性。

c）重金属特征分析

2020 年 4 月监测结果标明，工程区荷塘底泥污染物含量均低于《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB 15618-2018)污染风险筛选值。

d）清淤厚度分析

根据地勘检测出荷塘污染底泥层（A 层）、过渡层（B 层）、正常层（C 层）有较明显分层。底泥污染物检测指标显示，污染底泥分层检测污染指标有较明显分层现象。

因此本项目考虑将藻荡荷塘污染底泥层（A 层）污染物全部清除，过渡层（B 层）可作为超挖允许范围，但不宜全部挖除。同时，结合白洋淀内源污染治理试点项目的底泥释放实验相关经验成果，确定荷塘底泥清理厚度为 30cm。

4.2.4 土壤环境现状

4.2.4.1 藻荡土壤整体状况

工程区及附近，系河湖冲积、淤积物组成的低洼地、沼泽。水稻土和潮土是保护区内最主要的土壤类型，也是区内主要的耕作土壤。潮土母质来源于江河冲积物，多带弱碱性，质地以轻壤为主，土体疏松，地下水位较低，水肥气热协调，自然肥力高。水稻土的母质主要是冲积湖积的潮土性母质和沼泽草甸母质。
藻苲淀淀粉区目前处于退化期，稻田、苇田、草林地面积逐年增加，淀泊水面
萎缩严重，大部分区域已开垦为荷塘或农田（稻田、旱地等）其中，农田面积约
22.6km²，约占藻苲淀的45.2%。农田由于大量施用化肥，当水位上涨淹没农田
后，表层土壤中的化肥溶解进入水体，会对淀区水质带来不利影响。

藻苲淀现状早地氮磷含量高，当水位上涨淹没农田后，表层土壤中的化肥溶
解进入水体，会对淀区水质带来不利影响。为充分了解藻苲淀内部土壤状况，通
过分析近年来藻苲淀内部土壤监测资料，掌握藻苲淀内部土壤理化现状。2018
年9月、2019年1月和11月藻苲淀土壤监测数据表明，藻苲淀农田土壤全氮含
量变化范围为0.33~2.5g/kg，平均值为1.36g/kg，全磷含量变化范围为
0.32~1.17g/kg，平均值为0.65g/kg，南部稻田和早地区土壤整体属无风险、轻
度风险。

图4.2.4-1 2019年1月和11月藻苲淀土壤氮磷释放风险评价结果

4.2.4.2 工程区土壤现状

针对于藻苲淀退耕还淀湿地恢复工程一期内的主要农田及其他早地进行土
壤基本情况调查。土壤监测指标为TN、TP、TOC、pH、III类水条件下释放通
量实验（TN、TP、COD）7个指标，选取3个典型地块进行镉、汞、砷、铅、
铬、铜、镍、锌、六六六总量、滴滴涕总量、苯并[a]芘 11 个指标监测。

1）监测布点

根据航拍图解译，目前农田（稻田和旱地）面积约 2km²，根据种植的农作物类型及地块完整性、代表性，施工前选取 8 个典型地块，面积相对较大地块设置 2 个监测样，其余地块单元设置 1 个监测样，共 10 个监测土样。本次土壤监测选用蛇形采样法采集土壤混合样（如蛇形采样法示意图所示）、一般采耕层 0-20cm，取混合样 1-2kg，如数量太多可用四分法将多余土壤弃去。

图 4.2.4-2 蛇形法采样示意图
2）监测指标

土壤监测指标为 TN、TP、TOC、pH、III 类水条件下释放通量实验（TN、TP、COD、NH3-N、磷酸盐）9 个指标。

同时，选取 3 个典型地块增加监测镉、汞、砷、铅、铬、铜、镍、锌、六六六总量、滴滴涕总量、苯并[a]芘 11 个指标。
图 4.2.4-4 典型地块分布图

3）监测结果

2020 年 4 月针对藻荡淀退耕还淀湿地恢复工程一期内的旱地，包括稻田、荒地、小麦地等进行土壤监测调查。根据现场实地调查，根据农田种植作物不同以及地块完整性、地块面积等因素选择典型地块，选取 10 个典型地块，取样点位 10 个。依据《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB 15618-2018)对重金属进行评价。参照加拿大安大略省沉积物质量评估指南、美国国家环境保护局湖泊沉积物污染状况的评价及相关文献调查，本工程采用综合污染指数法对旱地土壤营养物质释放风险进行综合评价。

2020 年 4 月工程一期范围内土壤监测结果表明，10 个典型地块中有 3 块土壤营养物质释放风险为高风险；6 个典型地块土壤营养物质释放风险为中风险；1 个典型地块土壤营养物质释放风险为轻度风险。主要营养物质释放风险因子为总氮。当藻荡淀补水和湿地建成后，淀内水位上升，淹没农田，土壤中氮磷溶解
可能会对藻芽淀水质造成一定影响。

图 4.2.4-5 2020年工程区内土壤监测监测结果

表 4.2.4-1 2020年工程区内土壤监测监测结果

<table>
<thead>
<tr>
<th>点位名称</th>
<th>总氮 g/kg</th>
<th>全磷 g/kg</th>
<th>锌 mg/kg</th>
<th>铬 mg/kg</th>
<th>铅 mg/kg</th>
<th>汞 mg/kg</th>
<th>砷 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR1-1</td>
<td>3.2</td>
<td>1.06</td>
<td>0.33</td>
<td>99</td>
<td>33.5</td>
<td>0.181</td>
<td>11.4</td>
</tr>
<tr>
<td>TR1-2</td>
<td>2.58</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR2-1</td>
<td>1.97</td>
<td>0.948</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR2-2</td>
<td>2.03</td>
<td>0.933</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR3-1</td>
<td>2.08</td>
<td>0.806</td>
<td>0.36</td>
<td>83</td>
<td>31</td>
<td>0.069</td>
<td>15.1</td>
</tr>
<tr>
<td>TR4-1</td>
<td>2.02</td>
<td>1.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR5-1</td>
<td>1.98</td>
<td>1.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR6-1</td>
<td>2.02</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.2.5 声环境质量现状监测与评价

根据保定市 2017 年环境公报，区域环境噪声昼间监测平均等效声级为 61.9dB，达到 3 类区昼间标准，较上年增加 3.6dB。点位达标率为 36.8%，较上年下降了 25.9 个百分点。市区道路交通噪声昼间监测平均等效声级为 69.0dB，达到 4a 类区昼间标准。与上年相比，昼间道路交通噪声全市年均值下降 3.3dB，路段超标率下降 21.6 个百分点。

在距离本项目 4km 处的李庄村北侧 1 号桥和 600m 处的白庄村北侧 2 号桥设置了声环境在线监测设施。根据 2019 年 10 月 21 日至 26 日的监测结果，2 处监测点的昼间声环境质量均达到《声环境质量标准》(GB3096-2008) 2 类标准，夜间有所超标，可能与夜间运输量较大有关。

表 3.2-1 2019 年 10 月 21 日至 26 日声环境监测数据

<table>
<thead>
<tr>
<th>监测点位</th>
<th>李庄 1 号桥</th>
<th>白庄 2 号桥</th>
<th>2 类浓度限值</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>昼</td>
<td>夜</td>
<td>昼</td>
</tr>
<tr>
<td>21 日</td>
<td>50</td>
<td>52</td>
<td>-</td>
</tr>
<tr>
<td>22 日</td>
<td>51</td>
<td>54</td>
<td>50</td>
</tr>
<tr>
<td>23 日</td>
<td>52</td>
<td>56</td>
<td>51</td>
</tr>
<tr>
<td>24 日</td>
<td>52</td>
<td>60</td>
<td>51</td>
</tr>
<tr>
<td>25 日</td>
<td>51</td>
<td>76</td>
<td>51</td>
</tr>
<tr>
<td>26 日</td>
<td>50</td>
<td>76</td>
<td>50</td>
</tr>
</tbody>
</table>

4.2.6 生态环境质量现状调查与评价

4.2.6.1 评价区土地利用现状

根据 2019 年 10 月评价区卫片解译结果，评价区总面积为 1983.50hm²。根据评价区卫片解译结果，评价区土地利用类型以水域和耕地为主。其中耕地面积最大，为 726.47hm²，占评价区总面积的 36.63%；其次为水域滩涂，面积为...
706.18hm²，占评价区总面积的35.60%；评价区林地和建设用地的面积相对较小，分别为117.69hm²，189.98hm²，分别占评价区总面积的5.93%、9.58%。

<table>
<thead>
<tr>
<th>拼块类型</th>
<th>面积（hm²）</th>
<th>所占比例（%）</th>
<th>拼块（块）</th>
<th>所占比例（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>林 地</td>
<td>117.69</td>
<td>5.93</td>
<td>3113</td>
<td>3.86</td>
</tr>
<tr>
<td>草地</td>
<td>243.18</td>
<td>12.26</td>
<td>15631</td>
<td>19.40</td>
</tr>
<tr>
<td>耕 地</td>
<td>726.47</td>
<td>36.63</td>
<td>24070</td>
<td>29.87</td>
</tr>
<tr>
<td>水域滩涂</td>
<td>706.18</td>
<td>35.60</td>
<td>22951</td>
<td>28.48</td>
</tr>
<tr>
<td>建设用地及其他用地</td>
<td>189.98</td>
<td>9.58</td>
<td>14808</td>
<td>18.38</td>
</tr>
<tr>
<td>合计</td>
<td>1983.50</td>
<td>100.00</td>
<td>80573</td>
<td>100.00</td>
</tr>
</tbody>
</table>

4.2.6.2 生态系统现状

评价区生态系统以《中国植被》提出的植物群落分类系统为基础，参考《中国生态系统》的分类原则及方法，根据对建群种生活型、群落外貌、土地利用现状的分析，结合动植物分布和生物量的调查，对评价区生态环境进行生态系统划分，可分为自然的森林生态系统、草地生态系统、湿地生态系统及半自然的农田生态系统和人工的城镇/村落生态系统。评价区各生态系统类型及面积见表4.2.6-2。

表4.2.6-2 评价区各工程段生态系统统计表

<table>
<thead>
<tr>
<th>生态系统类型</th>
<th>森林生态系统</th>
<th>草地生态系统</th>
<th>湿地生态系统</th>
<th>农田生态系统</th>
<th>城镇/村落生态系统</th>
</tr>
</thead>
<tbody>
<tr>
<td>面积（hm²）</td>
<td>117.69</td>
<td>243.18</td>
<td>706.18</td>
<td>726.47</td>
<td>189.98</td>
</tr>
<tr>
<td>所占百分比（%）</td>
<td>5.93</td>
<td>12.26</td>
<td>35.60</td>
<td>36.63</td>
<td>9.58</td>
</tr>
</tbody>
</table>

a) 森林生态系统

根据现场调查并结合卫片解译，评价区内森林生态系统面积约为117.69hm²，占评价区总面积5.93%。森林生态系统比地表其他生态系统更加具有复杂的空间结构和营养链式结构，这有助于提高系统自身调节适应能力。评价区内森林生态系统主要为人工防护林，受人为干扰严重，其生态服务功能主要为水源涵养、水土保持等。主要分布在围堤上。

评价区内森林生态系统面积较小，植被类型以阔叶林为主，主要为人工林及河堤防护林。常见有加杨林（Populus ×canadensis）、小叶杨林（Form Populus
simonii）；常见植物有旱柳（Salix matsudana）、榆树（Ulmus pumila）、槐（Sophora japonica）、毛白杨（Populus tomentosa）等。该系统常见的动物有两栖类的中华蟾蜍（Bufo gargarizans）、黑斑侧褶蛙等，爬行类常见的有有丽斑麻蜥（Eremias argus）、黑眉晨蛇等；鸟类常见的有珠颈斑鸠（Streptopelia chinensis）、山斑鸠（Streptopelia orientalis）、灰喜鹊（Cyanopica cyanus）、喜鹊（Pica pica）、灰头绿霸木鸭、大山雀（Parus major）、北红尾鸲（Phoenicurus auroreus）等，兽类常见的有黑线仓鼠（Cricetulus Barabensis）、小家鼠（Mus musculus）等。

b) 草地生态系统

根据现场调查并结合卫片解译，评价区内草地生态系统面积为 243.18hm²，占评价区总面积 12.26%。草地生态系统多分布于农田、居民点周边，生态系统内动植物受人为活动影响强烈，多以适应性强的种类为主，植被类型多样，但面积较小且分布零散。

评价区内的草地生态系统主要分布在围两埝两侧、农田和村落周边。植被类型以灌草丛为主。灌草丛主要为刺儿菜灌草丛（Form. Cirsium segetum）、白茅灌草丛（Form. Imperata cylindrica）等。该系统常见的动物有两栖类的花背蟾蜍（Bufo raddei）、中华蟾蜍等，爬行类常见的有丽斑麻蜥、黄脊游蛇等；鸟类常见的有麻雀（Passer montanus）、喜鹊、大山雀、灰喜鹊、北红尾鸲等，兽类常见的有草兔（Lepus capensis）、黑线姬鼠（Apodemus agrarius）、黄鼬（Mustela sibirica）等。

c) 湿地生态系统

根据现场调查并结合卫片解译，评价区内湿地生态系统面积为 706.18hm²，占评价区总面积 35.60%。湿地生态系统服务功能不仅包括提供大量资源产品，而且具有大的环境调节功能和环境效益，在调蓄洪水、调节气候、控制土壤等方面发挥着重要作用。评价区内的湿地生态系统主要为瀑河、府河等水域以及工程区内的水塘、沟渠等。

（Form. Myriophyllum verticillatum）、浮萍群落（Lemna minor）等。湿地生态系统也是多种动物的重要栖息场所，常见的有两栖类中的黑斑侧褶蛙等；爬行类中黄脊游蛇等；此外，湿地生态系统更是湿地鸟类的重要栖息和觅食场所，分布有游禽如小䴙䴘、斑嘴鸭、白鹭（Egretta garzetta）、苍鹭（Ardea cinerea）等，以及其它傍水型鸟类，如白鹡鸰、普通翠鸟（Alcedo atthis）、红尾水鸲等。

d) 农田生态系统

根据现场调查并结合卫片解译，评价区内农田生态系统面积为 726.47hm²，占评价区总面积 36.63%。农田生态系统的主要生态功能体现在农产品及农副产品的生产，包括为人们提供农产品，为现代工业提供加工原料等。

评价区内的农业植被分为粮食作物和经济作物。其中粮食作物主要有以稻（Oryza sativa）、玉米（Zea mays）、小麦（Triticum aestivum）为主，兼有薯类（红薯（Ipomoea batatas）等；经济作物主要有豆类（大豆（Glycine max））、向日葵（Helianthus annuus）、陆地棉（Gossypium hirsutum）等。农田生态系统属人工控制的生态系统，与人类伴居的动物多活动于此，常见的物种有两栖类的中华蟾蜍、爬行类的丽斑麻蜥、黑眉晨蛇等、鸟类中珠颈斑鸠、山斑鸠、家燕（Hirundo rustica）、白鹡鸰、麻雀、喜鹊、灰喜鹊等；兽类常见的有黑线仓鼠、黑线姬鼠和小家鼠等。

e) 城镇/村落生态系统

根据现场调查并结合卫片解译，评价区内城镇/村落生态系统面积为 189.98hm²，占评价区总面积 9.58%。城镇/村落是一个高度复合的人工生态系统，与自然生态系统在结构和功能上都存在明显差别。评价区内的城镇/村落生态系统的服务功能主要是为居民提供生活和生产物质；满足人类精神生活需求的功能，包括娱乐文化。评价区内的城镇/村落生态系统主要为工程附近桥北村、杨孟庄村等村庄。

城镇/村落生态系统中的植被多为人工栽培的植物，如小叶杨（Populus simonii）、侧柏（Platycladus orientalis）、枣（Ziziphus jujuba）等。城镇/村落生态系统中的动物种类较少，主要为喜与人类伴居的种类，常见的动物有麻雀、灰斑鸠、喜鹊、白鹡鸰和各种鼠类等。

4.2.6.3 陆生植物资源

2020 年 5 月，项目组对本工程评价区的陆生植物现状进行了实地调查。在
调查过程中，根据工程特点，选择典型生境进行考察分析，采用样方法对陆生植物进行了外业调查，并到项目所在区域的林业部门收集资料，在此基础上，查阅并参考《中国植被》（吴征镒等，1980年）、《中国植物志》、《中国种子植物区系地理》（吴征镒等，2011年）、《河北植被》（刘濂，1996年）等，对评价区的植物资源现状得出综合结论。

a) 植物区系

评价区位于雄安新区安新县，根据《中国种子植物区系地理》（科学出版社，2011年），评价区植物区系属东亚植物区—华北地区—华北平原亚地区。该区全境为冲积平原海滨平原和海拔200米以下的丘陵。在历史上本亚区曾有大面积森林分布，但由于气候变迁、黄河频繁改道和这里是最早开发的地区，天然植被现已不复存在，仅在低山和盐碱地，次生林及灌木群系及田间杂草，植物种类较为贫乏。根据《河北植被》（刘濂，1996），评价区属于河北山地、平原植物区—河北平原植物亚区。该区多为温带成分，泛地中海成分偶有分布。

通过对现场调查采集的植物标本鉴定，以及对评价区历年积累的植物区系资料系统的整理，评价区主要维管束植物共计61科、189属、278种（含种下分类等级，下同），其中蕨类植物2科、2属、3种，裸子植物1科、1属、1种，被子植物58科、186属、274种。评价区共有野生维管植物50科161属241种。

评价区野生维管束植物科、属、种数占河北省野生维管束植物科、属、种总数的31.06%、18.79%和9.10%，占全国野生维管束植物科、属、种总数的11.90%、4.67%、0.77%（详见4.2.6.3-1）。

<table>
<thead>
<tr>
<th>表 4.2.6.3-1 评价区野生维管束植物统计表</th>
</tr>
</thead>
<tbody>
<tr>
<td>项目</td>
</tr>
<tr>
<td>科</td>
</tr>
<tr>
<td>评价区</td>
</tr>
<tr>
<td>河北省</td>
</tr>
<tr>
<td>全国</td>
</tr>
<tr>
<td>占河北省（%）</td>
</tr>
<tr>
<td>占全国（%）</td>
</tr>
</tbody>
</table>
注：数据来源，河北省野生维管植物（赵建成等，2005 年），中国蕨类植物（吴兆洪，1991 年），中国种子植物（吴征镒，2011 年）。

由上表可知，评价区植物区系组成以被子植物为主，蕨类、裸子植物种类组成较为贫乏。根据现场调查，评价区自然分布的被子植物以单子叶植物为主多为沼泽水生植被。评价区内地形较为单一，人为活动较大，植物组成种类较为贫乏。

1) 植物区系地理成分数量统计分析

属往往在植物区系研究中作为划分植物区系地理的标志或依据。统计分析评价区野生维管束植物属的地理成分具有重要意义。评价区野生维管束植物 161 属，其中蕨类植物属按照《中国植物志》（第一卷）陆树刚关于中国蕨类植物属的分布区类型（2004 年），种子植物属按照吴征镒《中国种子植物属的分布区类型系统（1991 年、1993 年）》，将评价区野生维管束植物 161 属划分为 14 个分布区类型（4.2.6.3-2）。

表 4.2.6.3-2 评价区野生维管束植物属的分布区类型

<table>
<thead>
<tr>
<th>属的分布区类型</th>
<th>评价区属数</th>
<th>占评价区非世界分布总属数比例（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.世界分布</td>
<td>43</td>
<td>——</td>
</tr>
<tr>
<td>2.泛热带分布</td>
<td>33</td>
<td>27.97</td>
</tr>
<tr>
<td>3.热带亚洲和热带美洲间断分布</td>
<td>2</td>
<td>1.69</td>
</tr>
<tr>
<td>4.旧世界热带分布</td>
<td>3</td>
<td>2.54</td>
</tr>
<tr>
<td>5.热带亚洲至热带大洋洲分布</td>
<td>1</td>
<td>0.85</td>
</tr>
<tr>
<td>6.热带亚洲至热带非洲分布</td>
<td>1</td>
<td>0.85</td>
</tr>
<tr>
<td>7.热带亚洲分布</td>
<td>3</td>
<td>2.54</td>
</tr>
<tr>
<td>第 2-7 项热带分布</td>
<td>43</td>
<td>36.44</td>
</tr>
<tr>
<td>8.北温带分布</td>
<td>36</td>
<td>30.51</td>
</tr>
<tr>
<td>9.东亚和北美洲间断分布</td>
<td>8</td>
<td>6.78</td>
</tr>
<tr>
<td>10.旧世界温带分布</td>
<td>18</td>
<td>15.25</td>
</tr>
<tr>
<td>11.温带亚洲分布</td>
<td>5</td>
<td>4.24</td>
</tr>
<tr>
<td>12.地中海、西亚至中亚分布</td>
<td>3</td>
<td>2.54</td>
</tr>
<tr>
<td>13 中亚分布</td>
<td>1</td>
<td>0.85</td>
</tr>
<tr>
<td>14.东亚分布</td>
<td>4</td>
<td>3.39</td>
</tr>
</tbody>
</table>
从上表可知：评价区野生维管束植物包含有世界分布属、热带分布属（第2～7类）、温带分布属（第8～14类）和中国特有分布属4个大类，其中热带分布属、温带分布属及中国特有分布属分别占评价区野生维管束植物非世界分布总属数的36.44%、63.56%、0%。在热带分布属中，以泛热带分布属最多，其次是热带亚洲分布、旧世界热带分布，其他的热带分布属所含比例相对较少；在温带分布属中，北温带分布属居首位，其次是旧世界温带分布和东亚和北美洲间断分布，其他的温带分布属所含比例相对较少。

（1）属的分布类型分述

①世界分布属

评价区属于本类型的野生维管束植物有43属，主要有木贼属（Equisetum）、槐叶蘋属（Salvinia）、蓼属（Polygonum）、酸模属（Rumex）、繁缕属（Stellaria）、藜属（Chenopodium）、猪毛菜属（Salsola）、苋属（Amaranthus）、毛茛属（Ranunculus）、金鱼藻属（Ceratophyllum）、荠属（Capsella）、独行菜属（Lepidium）、蔊菜属（Rorippa）、黄耆属（Astragalus）、槐属（Sophora）、老鹳草属（Geranium）、大戟属（Euphorbia）、鼠李属（Rhamnus）、蔷薇属（Viola）、狐尾藻属（Myriophyllum）、泽芹属（Sium）、薯蓣属（Nymphoides）、猪殃殃属（Galium）、茄属（Solanum）、酸浆属（Physalis）、狸藻属（Utricularia）、车前属（Plantago）、蒿属（Artemisia）、苍耳属（Xanthium）、慈姑属（Sagittaria）、眼子菜属（Potamogeton）、灯心草属（Juncus）、羊茅属（Festuca）、早熟禾属（Poa）、浮萍属（Lemna）、紫萍属（Spirodela）、香蒲属（Typha）、薹草属（Carex）、荸荠属（Heleocharis）、莎草属（Cyperus）、藨草属（Scirpus）。

②热带分布属

评价区野生维管束植物热带分布属有43属，占评价区野生维管束植物非世界分布总属数的36.44%，主要有6个分布型。
泛热带分布：评价区属于本类型的野生维管束植物有33属，占评价区野生维管束植物非世界分布总属数的27.97%，主要有马齿苋属（Portulaca）、蒺藜属（Tribulus）、铁苋菜属（Acalypha）、枣属（Ziziphus）、苘麻属（Abutilon）、木槿属（Hibiscus）、菟丝子属（Cuscuta）、牵牛属（Pharbitis）、马鞭草属（Verbena）、牡荆属（Vitex）、曼陀罗属（Datura）、母草属（Lindernia）、苦藜属（Vallisneria）、薯蓣属（Dioscorea）、鸭跖草属（Commelina）、孔颖草属（Bothriochloa）、狗牙根属（Cynodon）、虎尾草属（Chloris）、马唐属（Digitaria）、稗属（Echinochloa）、白茅属（Imperata）、芦苇属（Phragmites）、狼尾草属（Pennisetum）、古草属（Arundinella）、狗尾草属（Setaria）、稻属（Oryza）、慈姑属（Eleusine）、画眉草属（Eragrostis）、球柱草属（Bulbosystylis）、飘拂草属（Fimbristylis）、水蜈蚣属（Kyllinga）、砖子苗属（Mariscus）。

热带亚洲和热带美洲间断分布：评价区属于本类型的野生维管束植物有2属，占评价区野生维管束植物非世界分布总属数的1.69%，主要有地榆属（Sanguisorba）、砂引草属（Messerschmidia）。

旧世界热带分布：评价区属于本类型的野生维管束植物共3属，占评价区野生维管束植物非世界分布总属数的2.54%，主要有水鳖属（Hydrocharis）、荩草属（Arthraxon）、菅属（Themeda）。

热带亚洲至热带大洋洲分布：评价区属于本类型的野生维管束植物共1属，占评价区野生维管束植物非世界分布总属数的0.85%，主要有结缕草属（Zoysia）。

热带亚洲至热带非洲分布：评价区属于本类型的野生维管束植物共1属，占评价区野生维管束植物非世界分布总属数的0.85%，主要有芒属（Miscanthus）。

热带亚洲分布：评价区属于本类型的野生维管束植物共3属，占评价区野生维管束植物非世界分布总属数的2.54%，主要有构属（Broussonetia）、苦荬菜属（Ixeris）、小苦荬属（Ixeridium）。

温带分布

评价区野生维管束植物温带分布属有75属，占评价区野生维管束植物非世界分布总属数63.56%，主要有7个分布型。

北温带分布：评价区属于本类型的野生维管束植物共36属，占评价区野生
维管束植物非世界分布总属数的 30.51%，主要有榆属（Ulmus）、葎草属（Humulus）、
桑属（Morus）、无心菜属（Arenaria）、蝇子草属（Silene）、滨藜属（Atriplex）、
地肤属（Kochia）、棱斗菜属（Aquilegia）、碱毛茛属（Halerpestes）、紫堇属
（Corydalis）、播娘蒿属（Descurainia）、龙芽草属（Agrimonia）、苹果属（Malus）、
委陵菜属（Potentilla）、蔷薇属（Rosa）、绣线菊属（Spiraea）、葡萄属（Vitis）、
水芹属（Oenanthe）、茜草属（Rubia）、打碗花属（Calystegia）、地锦属（Lycopus）、
薄荷属（Mentha）、枸杞属（Lycium）、地笋属（Lycopus）、拂子茅属
（Calamagrostis）、赖草属（Leymus）、臭草属（Melica）、碱茅属（Puccinellia）、
鹅观草属（Roegneria）、大麦属（Hordeum）、黑三棱属（Sparganium）。

东亚和北美间断分布：评价区属于本类型的野生维管束植物共 8 属，占评价
区野生维管束植物非世界分布总属数的 6.78%，主要有地蔷薇属（Chamaerhodos）、
紫穗槐属（Amorpha）、胡枝子属（Lespedeza）、鸡眼草属（Kummerowia）、刺槐
属（Robinia）、地锦属（Parthenocissus）、蛇床属（Cnidium）、萹属（Zizania）。

旧世界温带分布：评价区属于本类型的野生维管束植物共 18 属，占评价区
野生维管束植物非世界分布总属数的 15.25%，主要有石竹属（Dianthus）、匙荠
属（Bunias）、糖芥属（Erysimum）、草木犀属（Melilotus）、苜蓿属（Medicago）、
菱属（Trapa）、鹅绒藤属（Cynanchum）、附地菜属（Trigonotis）、夏至草属（Lagopsis）、
益母草属（Leonurus）、荆芥属（Nepeta）、败酱属（Patrinia）、苞蒿属
（Chrysanthemum）、旋覆花属（Inula）、鸦葱属（Scorzonera）、苦苣菜属（Sonchus）、
蝇子草属（Silene）、芨芨草属（Achnatherum）。

温带亚洲分布：评价区属于本类型的野生维管束植物共 5 属，占评价区野生
维管束植物非世界分布总属数的 4.24%，主要有虎杖属（Reynoutria）、米口袋属
（Gueldenstaedtia）、马兰属（Kalimeris）、狗娃花属（Heteropappus）、黄鹌菜属
（Youngia）。

地中海区、西亚至中亚分布：评价区属于本类型的野生维管束植物共 3 属，
占评价区野生维管束植物非世界分布总属数的 2.54%，主要有苦马豆属
（Sphaerophysa）、牻牛儿苗属（Erodium）、白刺属（Nitraria）。
中亚分布：评价区属于本类型的野生维管束植物共 1 属，占评价区野生维管束植物非世界分布属总数的 0.85%，主要有角蒿属（Incarvillea）。

东亚分布：评价区属于本类型的野生维管束植物共 4 属，占评价区野生维管束植物非世界分布属总数的 3.39%，主要有侧柏属（Platycladus）、萝藦属（Metaplexis）、斑种草属（Bothriospermum）、地黄属（Rehmannia）。

2) 植物区系主要特征

通过对评价区内野生维管束植物统计分析的基础上，将评价区内维管束植物区系的主要性质和特点概述如下：

（1）植物区系组成成分较贫乏

评价区地理环境独特，气候适宜，植物区系组成成分较丰富。据统计，评价区野生维管植物 241 种，隶属于 50 科 161 属，评价区野生维管植物科、属、种数占河北省野生维管植物科、属、种总数的 31.06%、18.79% 和 9.10%，占全国野生维管植物科、属、种总数的 11.90%、4.67%、0.77%。无中国特有种分布，评价区内植物区系组成成分较为贫乏。

（2）地理成分复杂

从属的分布型来看，评价区维管束植物区系的地理成分是很复杂的。按照中国蕨类植物及中国种子植物属的分布区类型系统，中国维管束植物属有 15 个分布区类型，评价区野生维管束植物属在我国维管束植物属的分布区类型系统中有 14 个，包含有世界分布、热带分布、温带分布 3 个大类，评价区维管束植物的区系地理成分较复杂。

（3）植物区系以温带成分为主

在评价区的 161 属中，温带分布属共 75 属，占非世界分布总属的 63.56%，热带温带分布属共 43 属，占非世界分布总属的 36.44%。故评价区内植物区系区系是以温带分布为主，特别是以北温带分布为主要成份的性质。

b) 植被

1) 植被类型

根据《中国植被》，评价区属温暖带落叶阔叶林区域——温暖带北部落叶栎林地带——黄、海河平原栽培植被区。根据《河北植被》（刘濂等，1996 年），评价区植被属暖温带落叶阔叶林地带—河北平原农作物栽培植被区—保定、太行
山北段山前平原麦、油、棉栽培植被片。境内地势平坦，自然植被已遭破坏。

经过实地调查，根据区内现状植被中群系组成的建群种与优势种的外貌，以及群落的环境生态与地理分布特征，按照《中国湿地植被》可将评价区的自然植被划分为2个植被型组、4个植被型、14个群系。评价范围内的主要植被类型及其分布见表4.2.6-5。

<table>
<thead>
<tr>
<th>植被型组</th>
<th>植被型</th>
<th>群系</th>
<th>分布</th>
</tr>
</thead>
<tbody>
<tr>
<td>自然植被</td>
<td></td>
<td>1. 刺儿菜群系</td>
<td>Form. Cirsium segetum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. 白茅群系</td>
<td>Form. Imperata cylindrica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. 芦苇群系</td>
<td>Form. Phragmites australis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. 扁秆荆三棱群系</td>
<td>Form. Schoenoplectus planiculmis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. 香蒲群系</td>
<td>Form. Typha orientalis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. 茵茵蒜群系</td>
<td>Form. Ranunculus chinensis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. 红蓼群系</td>
<td>Form. Polygonum orientale</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. 蒌群系</td>
<td>Form. Zizania latifolia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9. 浮萍群系</td>
<td>Form. Lemna minor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10. 苦菜群系</td>
<td>Form. Nymphoides peltatum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11. 藻草群系</td>
<td>Form. Potamogeton crispus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12. 金鱼藻群系</td>
<td>Form. Ceratophyllum demersum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13. 狐尾藻群系</td>
<td>Form. Myriophyllum verticillatum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14. 微齿眼子菜群系</td>
<td>Form. Potamogeton mackianus</td>
</tr>
</tbody>
</table>

人工植被
植被类型组

<table>
<thead>
<tr>
<th>植被类型</th>
<th>群系</th>
<th>分布</th>
</tr>
</thead>
<tbody>
<tr>
<td>人工林</td>
<td>防护林</td>
<td>加杨、小叶杨、毛白杨等</td>
</tr>
<tr>
<td></td>
<td>经果林</td>
<td>苹果、桃、杏、枣、柿等</td>
</tr>
<tr>
<td>农业植被</td>
<td>粮食作物</td>
<td>玉米、水稻、粟、豆/薯类</td>
</tr>
<tr>
<td></td>
<td>经济作物</td>
<td>棉花、向日葵、蔬菜等</td>
</tr>
</tbody>
</table>

2) 主要植被类型描述

（1）自然植被

①群系

草丛沼泽是由草本植被组成的群系是湿地植被中，类型最多，面积最大，分布最广的一种类型。评价区内适宜草丛沼泽生长的沟渠、池塘、湖淀面积较广，评价区内草丛沼泽植被类型较为丰富。群系评价区常见的草丛沼泽群系有刺儿菜群系（*Form. Cirsium segetum*）、白茅群系（*Form. Imperata cylindrica*）、芦苇群系（*Form. Phragmites australis*）、扁秆荆三棱群系（*Form. Schoenoplectus planiculmis*）、香蒲群系（*Form. Typha orientalis*）、茴茴蒜群系（*Form. Ranunculus chinensis*）、红蓼群系（*Form. Polygonum orientale*）、菰群系（*Form. Zizania latifolia*）。

刺儿菜群系（*Form. Cirsium segetum*）

刺儿菜为中生植物，适应性很强，任何气候条件下均能生长，普遍群生于撂荒地、耕地、路边、村庄附近。在评价区内主要见于人工林下、农田及道路两旁。

草本层 盖度 65%，层均高 0.2m，优势种为刺儿菜（*Cirsium segetum*），高 0.1~0.3m，盖度 60%。为单优势种伴生种较少，偶有狗尾草（*Setaria viridis*）、黄鹌菜（*Youngia japonica*）、野艾蒿（*Artemisia lavandulifolia*）伴生其中。层外植物有肾叶打碗花（*Calystegia soldanella*）、葎草（*Humulus scandens*）。

调查点位：一工区东部施工道路（GPS 点位：N: 38°53'26.85"; E: 115°49'19.52", 海拔：9m）。

白茅群系（*Form. Imperata cylindrica*）

白茅喜光，稍耐阴，喜肥又极耐瘠，喜疏松湿润土壤，相当耐水淹，也耐干旱，适应性较强。常生于低山带平原河岸草地、农田、果园、苗圃、田边、路旁、荒坡草地等竞争扩展能力极强。评价区主要见于田边、路旁及荒地。
草本层盖度60%，层均高0.4m，优势种为白茅（Imperata cylindrica），高0.3~0.6m，盖度50%。伴生植物有狗尾草（Setaria viridis）、蒲公英（Taraxacum mongolicum）、小藜（Chenopodium serotinum）、紫花地丁（Viola philippica）等。
调查点位：二工区东段施工道路（GPS点位：N: 38°53'56.66"; E: 115°49'16.25"，海拔：6m）。

| 刺儿菜群系
(Form. Cirsium segetum) | 白茅群系
(Form. Imperata cylindrica) |
|------------------------|------------------------|

芦苇群系（Form. Phragmites australis）

芦苇为全球广泛分布的多型种，生于江河湖泽、池塘沟渠沿岸和低湿地。各种有水源的空旷地带，常以其迅速扩展的繁殖能力，形成连片的芦苇群系。评价区的沟渠、湖淀水域及湿地内均有分布且为优势物种。
草本层盖度90%，层均高1.2m，优势种为芦苇（Phragmites australis），高1.2~1.4m，盖度85%。为单优势种伴生种较少，偶有扁秆荆三棱（Schoenoplectus planiculmis）、稗（Echinochloa crusgalli）伴生其中。

调查样点：北何庄村附近（GPS定位：N: 38°54'46.63"; E: 115°50'6.17"; 海拔7m）。

扁秆荆三棱群系（Form. Schoenoplectus planiculmis）

扁秆荆三棱为多年生草本植物，匍匐根茎粗而长，顶端生球状块茎。秆高大，粗壮。多生于湖、河浅水中和水湿地。评价区内常见于沟渠两旁及湖淀浅水区域。
草本层盖度80%，层均高0.6m，优势种为芦苇（Phragmites australis），高0.4~0.8m，盖度75%。为单优势种伴生种较少，偶有小灯心草（Juncus bufonius）、水葱（Schoenoplectus tabernaemontani）伴生其中。
香蒲群系（Form. Typha orientalis）

香蒲喜高温多湿气候，多生于湖泊、池塘、沟渠、沼泽及河流缓流带。评价区内常见于沟渠、湖淀区域，分布较为广泛。

草本层盖度70%，层均高0.5m，优势种为香蒲（Typha orientalis），高0.4~0.7m，盖度65%。伴生植物有槐叶蘋（Salvinia natans）、水鳖（Hydrocharis dubia）、菅草（Potamogeton crispus）、眼子菜（Potamogeton distinctus）。

调查样点：二施工区北岸东部施工道路附近（GPS定位：N：38°54′30.76″；E：115°49′15.91″；海拔8m）。

茵茵蒜群系（Form. Ranunculus chinensis）

茵茵蒜一年生草本，须根多数簇生，茎直立粗壮。多生于平原与丘陵、溪边、田旁的水湿草地。评价区内常见于田埂道路两旁及沟渠浅水区域。

草本层盖度60%，层均高0.3m，优势种为茵茵蒜（Ranunculus chinensis），高0.2~0.6m，盖度50%。伴生植物有浮萍（Lemna minor）、碱毛茛（Halerpestes sarmentosa）、香蒲（Typha orientalis）、眼子菜（Potamogeton distinctus）。

红蓼群系（Form. Polygonum orientale）
红蓼喜水又耐干旱，常生于山谷、路旁、田埂、河川两岸的草地及河滩湿地，往往成片生长。评价区内常见于道路田埂两旁及围埝。

草本层盖度 70%，层均高 0.5m，优势种为红蓼（*Polygonum orientale*），高 0.4~0.8m，盖度 60%。伴生植物有芦苇（*Phragmites australis*）、香蒲（*Typha orientalis*）、藜（*Chenopodium album*）。层间植物有肾叶打碗花（*Calystegia soldanella*）等。

菰群系（Form. *Zizania latifolia*）
菰属喜温性植物，也是一种较为常见的水生蔬菜。全草为优良的饲料，为鱼类的越冬场所。也是固堤造陆的先锋植物。在评价区内常见于沟渠两旁及湖淀的浅水区域。

草本层盖度 60%，优势种为菰（*Zizania latifolia*），盖度 57%。菰为单优势种。

（2）浅水植物

浅水湿地植物群系是指湖淀中有湿生植物和水生植物的地段。浅水湿地植物群系的分布，由于湖水深浅不一，湖岸陡峭不一，水质的透明度和水质的差别，在湖中分布位置不一致。评价区内浅水湿地植物可分为漂浮植物、浮叶植物、沉水植物三种类型。

①漂浮植物

漂浮植物的特点是植物体漂浮于水面，根悬浮于水中，随着水流和风浪漂移在水面。评价区内常见的漂浮植物群系为浮萍群系（*Lemna minor*）。浮萍群系（*Lemna minor*）

浮萍为漂浮植物，为良好的猪饲料、鸭饲料；也是草鱼的饵料。生于水田、
池沼或其它静水水域均有分布。评价区内沟渠、湖淀静止区域均有分布。

草本层盖度 55%，优势种为浮萍（*Lemna minor*），盖度 50%。伴生种有槐叶蘋（*Salvinia natans*）、紫萍（*Spirodela polyrrhiza*）、菹草（*Potamogeton crispus*）等。

调查样点：瀑河附近（GPS 定位：N: 38°55'3.58"；E: 115°48'25.90"；海拔 8m）

②浮叶植物

浮叶植物的特点是植物的根固定于水底的淤泥中，叶片浮于水面。评价区内常见的浮叶植物群系为荳菜群系（Form. *Nymphoides peltatum*）。

荳菜群系（Form. *Nymphoides peltatum*）

荳菜为多年生水生草本植物，其根和横走的根茎生长于底泥中；茎枝悬于水中，生出大量的不定根；叶和花漂浮水面。常分布于池沼、湖泊、沟渠、稻田、河流或河口的平稳水域。评价区内常见于湖淀区。

草本层盖度 60%，优势种为荳菜（*Nymphoides peltatum*），盖度 56%。伴生植物有浮萍（*Lemna minor*）、槐叶蘋（*Salvinia natans*）、金鱼藻（*Ceratophyllum demersum*）、菹草（*Potamogeton crispus*）等。

调查样点：三工区施工区内（GPS 定位：N: 38°54'44.41"；E: 115°48'39.73"；海拔 8m）。

（3）沉水植物

菹草群落（Form. Potamogeton crispus）

菹草为多年生沉水草本植物，广泛生长在湖沼、池塘、河沟和稻田。对水域的富营养化有较强的适应能力。评价区内常见于沟渠、湖淀深水区域。

草本层盖度90%，优势种为菹草（Potamogeton crispus），盖度90%。为单优势种。

调查样点：一工区南岸东部施工道路附近沟渠（GPS 定位：N: 38°53'52.82"；E: 115°48'41.18"；海拔 8m）。

微齿眼子菜群落（Form. Potamogeton maackianus）

微齿眼子菜为多年生沉水草本植物，生于湖泊、池塘等静水水体。评价区内常见于湖淀深水区域。

草本层盖度65%，优势种为微齿眼子菜（Potamogeton maackianus），盖度60%。伴生植物有浮萍（Lemna minor）、香蒲（Typha orientalis）、竹叶眼子菜（Potamogeton wrightii）等。

调查样点：三工区施工道路东部（GPS 定位：N: 38°53'52.82"；E: 115°48'41.18"；海拔 8m）。

金鱼藻群落（Form. Ceratophyllum demersum）

金鱼藻为多年生沉水植物，常生长于小湖泊静水处，池塘、水沟等处亦常见。评价区内常见于沟渠浅水区域。

草本层盖度65%，优势种为金鱼藻（Ceratophyllum demersum），盖度60%。伴生植物有浮萍（Lemna minor）、菱菜（Nymphoides peltatum）、菹草（Potamogeton crispus）、莲（Nelumbo nucifera）等。

调查样点：三工区东侧施工区内（GPS 定位：N: 38°53'52.82"；E: 115°48'41.18"；海拔 8m）。
浅水湿地植物

浅水湿地植物群系是指湖淀中有湿生植物和水生植物的地段。浅水湿地植物群系的分布，由于湖水深浅不一，湖岸陡峭不一，水质的透明度和水质的差别，在湖中分布位置不一致。评价区内浅水湿地植物可分为漂浮植物、浮叶植物、沉水植物三种类型。

狐尾藻群落（Form. *Myriophyllum verticillatum*）

狐尾藻为多年生粗壮沉水草本，根状茎发达，对富营养化水中的氮磷均有较好的净化作用。在池塘、河沟、沼泽中常有生长。评价区内常见于沟渠浅水区域。

草本层盖度 70%，优势种为狐尾藻（*Myriophyllum verticillatum*），盖度 65%。

调查样点：一工区外围施工道路（GPS 定位：N: 38°53'26.58"; E: 115°48'55.41"; 海拔 7m）。

（5）人工植被

①人工林

评价区内的人工林主要为防护林及经果林，防护林主要有杨杨林（Form. *Populus ×canadensis*）；经果林主要有李（Form. *Amygdalus persica*）、杏（Form. *Armeniaca vulgaris*）等。

②农业植被

评价区内的农业植被分为粮食作物和经济作物。其中粮食作物主要有以小麦、水稻、玉米为主，兼有粟、薯类（红薯）等；经济作物主要有棉花、向日葵、蔬菜等。
（6）植被分布特征

评价区地形较为平坦，生境条件较为单一且区域内农耕历史悠久，人为干扰较为严重，区域内基本不存在原生植被。评价区土地利用类型以耕地、水域为主，由于水分的差异评价区内植被分布规律如下：

在工程的施工营地及一施工区土地利用类型为耕地，主要为农业植被及常见的农田杂草群系，常见的农作物为小麦、玉米、水稻等；农田杂草群系为刺儿菜群系、白茅群系等；区域内沟渠中亦有芦苇群系、狐尾藻群系、菹草群系零星分布。二施工区为季节性水陆交替地带沼泽植被较为发育，常见的植物群系主要有芦苇群系、扁秆三棱群系、香蒲群系、茵茵草群系、红蓼群系、菰群系等。三施工区常年为水域在浅水区域水生植被较为发育，常见的水生植物群系主要有茭草群系、微齿眼子菜群落蓝藻群系、金鱼藻群系、狐尾藻群系、浮萍群系等。

c) 重点保护植物和古树名木

（1）重点保护植物

①国家重点保护野生植物

根据《国家重点保护野生植物名录（第一批）》（农业部、国家林业局，2001年8月修订）及安新县内关于国家重点保护野生植物的相关资料，同时对安新县自然资源局评价区内居民进行访问调查及现场实地调查，在评价区未发现国家重点保护野生植物。

②河北省级重点保护野生植物

4.2.6-6 评价区内保护植物分布情况表

<table>
<thead>
<tr>
<th>物种</th>
<th>位置</th>
<th>面积及生长状况</th>
<th>与工程的位置关系</th>
<th>现场照片</th>
</tr>
</thead>
<tbody>
<tr>
<td>莕菜（Nymphoides peltatum）</td>
<td>二工区东侧中心点 GPS 坐标：N:38°54'34.53";E:115°49'46.25";海拔 9m</td>
<td>面积：14.3hm² 生长状况：良好</td>
<td>距离二工区东侧最近距离约 5m</td>
<td></td>
</tr>
</tbody>
</table>

（2）古树名木

（3）外来入侵种

根据《中国外来入侵物种名单》（第一批，2003 年）、《中国外来入侵物种名单》（第二批，2010 年）、《中国外来入侵物种名单》（第三批，2014 年）、《中国自然生态系统外来入侵物种名单》（第四批，2016 年），参考本工程所在行政区关于外来入侵植物的相关资料，通过现场实地调查，评价区较为常见的外来入侵物种为反枝苋（Amaranthus retroflexus）、刺苋（Amaranthus spinosus）、土荆芥（Dysphania ambrosioides），偶见于路边、田埂、荒地等地，分布面积较小，危害较轻。

4.2.6.4 陆生动物资源

a) 动物区系及种类组成

根据《中国动物地理》（张荣祖 科学出版社，2011）的中国动物地理区划，本项目区内动物区划属于古北界——东北亚界——华北区——黄淮平原亚区——华北平原省—平原农田、林灌、草地动物群。

为表示各类动物种类数量的丰富度，采用数量等级方法：对某动物种群在单位面积内其数量占所调查动物总数的 10% 以上，用 “+++”表示，该种群为当地优势种；对某动物种群占调查总数的 1~10%，用 “+” 表示，该动物种为当地普通种；对某动物种群占调查总数的 1% 以下，用 “+” 表示，该物种为当地稀有种。数量等级评价标准见表 4.2.6-7。

<table>
<thead>
<tr>
<th>种群状况</th>
<th>表示符号</th>
<th>标准</th>
</tr>
</thead>
<tbody>
<tr>
<td>当地优势种</td>
<td>+++</td>
<td>单位面积内其数量占所调查动物总数的 10% 以上</td>
</tr>
<tr>
<td>当地普通种</td>
<td>+</td>
<td>单位面积内其数量占所调查动物总数的 1~10%</td>
</tr>
<tr>
<td>当地稀有种</td>
<td>+</td>
<td>单位面积内其数量占所调查动物总数的 1% 及以下，或仅 1 只</td>
</tr>
</tbody>
</table>

根据实地考察及对相关资料进行综合分析，评价区分布的陆生脊椎动物有 4 纲 21 目 43 科 76 种，其中东洋种 9 种，古北种 37 种，广布种 30 种；评价区有发现国家 I 级重点保护野生动物 1 种，为大鸨；有国家 II 级重点保护野生动物 3 种，分别为黑鹳（Milvus migrans）、白尾鹞和鹊鹞；有河北省级重点保护野生动物 15 种。评价区内陆生动物的种类组成、区系和保护等级具体见表 4.2.6-8。
表 4.2.6-8 评价区陆生脊椎动物种类组成、区系和保护等级

<table>
<thead>
<tr>
<th>种类组成</th>
<th>动物区系</th>
<th>保护级别</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>纲</td>
<td>目</td>
</tr>
<tr>
<td>两栖纲</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>爬行纲</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>鸟纲</td>
<td>14</td>
<td>33</td>
</tr>
<tr>
<td>哺乳纲</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>合计</td>
<td>21</td>
<td>43</td>
</tr>
</tbody>
</table>

二、陆生动物多样性现状

1) 两栖类

评价区内的两栖动物有 1 目 2 科 3 种（名录详见附录）。两栖类种类分布较少，主要分布有蟾蜍科、蛙科物种，分别是中华蟾蜍（Bufo gargarizans）、花背蟾蜍（Bufo raddei）、黑斑侧褶蛙（Pelophylax nigromaculatus），其中较为常见的为花背蟾蜍、黑斑侧褶蛙。未发现国家级、省级重点保护两栖类。

(1) 区系类型

按区系类型分，将以上两栖类分为 2 种区系类型：古北种 1 种，占 33.33%；广布种 2 种，占 66.67%；无东洋种分布。评价范围内的两栖类以古北界成分占绝对优势，这与评价区地处古北界的地理位置一致。

(2) 生态类型

根据生活习性的不同，评价区内的 5 种两栖类分为以下 2 种生态类型：

静水型（在静水或缓流中觅食）：有黑斑侧褶蛙 1 种，主要在评价范围内有水分布的静水水域中，与人类活动关系较密切。

陆栖型（在陆地上活动觅食）：包括中华蟾蜍、花背蟾蜍 2 种，它们主要在评价区内离水源不远的陆地上如草地、石下、田埂间等生境内活动。

2) 爬行类/

(1) 种类、数量及分布

评价范围内爬行类共有 1 目 3 科 5 种（名录详见附录），其中游蛇科、蜥蜴科的种类最多，各有 2 种。评价区内未发现国家重点保护爬行类分布；有河北省重点保护爬行类 2 种，即黑眉晨蛇（Elaphe taeniura）。评价区分布的爬行类中优
势种为丽斑麻蜥（Eremias argus）、黄脊游蛇（Coluber linnaeus）等。

（2）区系类型
按照爬行动物的区系类型，将以上评价区内的7种爬行类分为2种区系类型：广布种1种，占20.00%；古北种4种，占80.00%。与两栖类类似，爬行类的迁徙能力也较差，东洋界成分难以跨越地理障碍向古北界渗透，因此评价区内的爬行类仍然以古北界为主。

（3）生态类型
根据评价区内爬行类生活习性的不同，可以将上述爬行类分为以下3种生态类型：

住宅型（在住宅区的建筑物中筑巢、繁殖、活动）：有无蹼壁虎（Gekko swinhonis）1种。主要在评价区内的居民点附近活动。

灌丛石隙型（经常活动在灌丛下面，路边石缝中）：有丽斑麻蜥、山地麻蜥（Eremias brenchleyi）2种。它们主要在评价区内的灌丛中活动。

林栖傍水型（在有溪流的丘陵山地区活动）：包括黄脊游蛇（Coluber linnaeus）、黑眉晨蛇共2种。它们主要在评价范围内水域附近的树林内活动。

3）鸟类
（1）种类、数量及分布
评价区内共分布有鸟类有61种，隶属于14目33科（名录见附录3-3）。其中，以雀形目鸟类最多，共28种，占评价区鸟类种数的45.90%。评价区内有国家Ⅰ级保护鸟类1种：大鸨（Otis tarda）；有国家Ⅱ级保护鸟类4种，即黑鸢（Milvus migrans）、白尾鹞（Circus c.cyanus）和鹊鹞（Circus melanoleucos）；有河北省省级重点保护鸟类13种，包括绿翅鸭（Anas crecca）、风头鹃鹃（Podiceps cristatus）、大杜鹃（Cuculus canorus）、黑翅长脚鹬（Himantopus himantopus）、夜鹭、池鹭、苍鹭、白鹭、灰头绿啄木鸟、黑卷尾（Dicrurus macrocercus）、灰喜鹊、喜鹊、白头鹎。

施工区域内南部一施工区多为耕地，分布鸟类多为傍人生活型，湿地鸟类分布较少；二施工区为季节性沼泽湿地，主要分布白鹭、白骨顶、普通翠鸟、白鹡鸰等涉禽或傍水型湿地鸟类；三施工区水生相对较深，常年有水，主要分布小䴙䴘、绿翅鸭等游禽、黑翅长脚鹬、白腰草鹬等湿地鸟类。
（2）生态类型

按生活习性的不同，可以将评价区内的鸟类分为以下 6 种生态类型：

游禽（脚向后伸，趾间有蹼，有扁阔的或尖嘴，善于游泳、潜水和在水中掏取食物）：评价区内分布的有小䴙䴘（Tachybaptus ruficollis）、凤头䴙䴘（Podiceps cristatus）、赤麻鸭（Tadorna ferruginea）、绿翅鸭（Anas crecca）、绿头鸭（Anas platyrhynchos）、斑嘴鸭、灰翅浮鸥、普通燕鸥 8 种，它们在评价区内主要在河岸边活动、捕食，主要分布在评价区河流、池塘。

涉禽（嘴，颈和脚都比较长，脚趾也很长，适于涉水行进，不会游泳，常用长嘴插入水底或地面取食）：评价区内分布的有：池鹭、夜鹭、白鹭、苍鹭、普通秧鸡、黑水鸡、白骨顶、黑翅长脚鹬、红脚鹬、白腰草鹬、凤头麦鸡（Vanellus vanellus）、灰头麦鸡（Vanellus cinereus）、环颈鸻（Charadrius alexandrinus）13种。它们在评价区内主要分布于水域附近。

陆禽（体格结实，嘴坚硬，脚强而有力，适于挖土，多在地面活动觅食）：包括鸡形目、鸽形目的所有种类，评价区分布的有环颈雉、山斑鸠、珠颈斑鸠、灰斑鸠和大鸨 5 种，它们在评价区内主要分布于工程沿岸的林缘地带、农田区域或城镇村落。

猛禽（具有弯曲如钩的锐利嘴和爪，翅膀强大有力，能在天空翱翔或滑翔，捕食空中或地下活的猎物）：包括鹰形目种类，评价区分布的有黑鸢、白尾鹞和鹊鹞 3 种，它们在评价区内主要分布于林缘及开阔地等，其活动范围较广。

攀禽（嘴、脚和尾的构造都很特殊，善于在树上攀缘）：包括鹃形目、佛法僧目、鴷形目的种类，评价区分布的有大杜鹃、普通翠鸟、戴胜、灰头绿啄木鸟共 4 种。评价区的攀禽除翠鸟科的普通翠鸟分布在有水的地方外，其余种类主要分布于树林和灌丛中。

鸣禽（鸣管和鸣肌特别发达。一般体形较小，体态轻捷，活泼灵巧，善于鸣叫和歌唱，且巧于筑巢）：包括雀形目的所有种类，共 28 种。其生活习性多种多样，广泛分布于评价区各类生境中，如树林、灌丛、农田、居民点及水域附近等，其中分布于树林和灌丛生境的种类较多。评价区内鸣禽较常见，经实地调查，喜鹊、灰喜鹊、麻雀、大山雀等为常见种。

（3）区系类型

评价区的鸟类中，东洋种有 9 种，占 14.75%：广布种有 26 种，占 42.62%：
古北种有 26 种，占 42.62%。评价区内的鸟类以古北种最多，这与评价区处于古北界相一致，也分布有少量东洋种，这与鸟类的迁徙及相对较强的迁移能力有关。

（4）居留型

鸟类迁徙是鸟类随着季节变化进行的，方向确定的，有规律的和长距离的迁居活动。根据鸟类迁徙的行为，可将评价区的鸟类分成以下 4 种居留型。

留鸟（长期栖居在生殖地域，不作周期性迁徙的鸟类）：共 22 种，占评价区所有鸟类的 36.07%，主要包括雉科、鸠鸽科、鹰科、啄木鸟科、翠鸟科和雀形目中的一些种类如鹎科、鸦科等的种类。

夏候鸟（夏候鸟是指春季或夏季在某个地区繁殖、秋季飞到较暖的地区去冬、第二年春季再飞回原区的的鸟）：共 22 种，占评价区所有鸟类的 36.07%，主要包括鹭科、雀形目的百灵科、伯劳科、燕雀科等的种类。

冬候鸟（冬季在某个地区生活，春季飞到较远而且较冷的地区繁殖，秋季又飞回原区的鸟）：共 5 种，占评价区所有鸟类的 8.19%，主要包括鸭科等的部分种类。

旅鸟（指迁徙中途经某地区，而又不在该地区繁殖或越冬）：共 12 种，占评价区所有鸟类的 19.67%，评价区中旅鸟有凤头麦鸡、白腰草鹬、大鸨、鹊鹞等。

综上所述，评价区的鸟类中，在评价区繁殖（包括留鸟和夏候鸟）的鸟类有 44 种，所占比例为 68.75%，迁徙鸟类（包括夏候鸟、冬候鸟和旅鸟）共有 39 种，占 63.93%，说明评价区内的鸟类大多数种类都在评价区繁殖，不做长距离迁徙。

4）兽类

（1）种类、数量及分布

评价区兽类共有 5 目 5 科 7 种（名录详见附录），以啮齿目居多，啮齿目种类 3 种，占评价区兽类种类的 42.86%。评价区未发现国家级重点保护兽类；河北省级重点保护野生动物 1 种，为黄鼬。

（2）区系类型

按区系类型划分，可将评价区内的 7 种兽类分为 2 类：古北种 1 种，占 14.29%；广布种 6 种，占 85.71%；未发现东洋种分布。由于区域兽类多为小型兽类，迁移能力相对较弱，因此，兽类与与两栖、爬行类相似，古北界较东洋种占优，与
评价区地处古北界一致。

（3）生态类型

根据评价区兽类生活习性的不同，可以将上述种类分为以下 2 种生态类型：

半地下生活型（穴居型，主要在地面活动觅食、栖息、避敌于洞穴中，有的也在地下寻找食物）：有东北刺猬、草兔、灭氏仓鼠、褐家鼠、小家鼠和黄鼬共 6 种。它们在评价区内主要分布在林地和农田、居民点中，其中褐家鼠、小家鼠等鼠类与人类关系密切，灭氏姬鼠主要在区域内的灌草地活动。

岩洞栖息型（在岩洞中倒挂栖息）：普通伏翼（Pipistrellus pipistrellus）1 种。它们在评价区内主要分布于居民区的屋檐或墙缝。

c) 重点保护野生动物

评价区内的陆生脊椎动物中，有国家 I 级重点保护野生动物 1 种：为大鸨；有国家 II 级重点保护野生动物 3 种：分别为黑鸢、白尾鹞和鹊鹞。评价区内陆生脊椎动物中，有河北省级重点保护动物 15 种，其中爬行类 1 种，为黑眉晨蛇；鸟类 13 种；兽类有 1 种，为黄鼬。评价区重点保护野生动物名录见表 4.2.6-9。

<table>
<thead>
<tr>
<th>中文名、拉丁名</th>
<th>生境</th>
<th>居留型</th>
<th>区系</th>
<th>保护等级</th>
<th>分布</th>
</tr>
</thead>
<tbody>
<tr>
<td>国家重点保护野生动物</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. 大鸨 Otis tarda</td>
<td>出现于人烟稀少的麦田、荒草地、开阔的河漫滩、枯水期露出水面的湖滩周围。</td>
<td>旅</td>
<td></td>
<td>国家 I 级</td>
<td>评价区内远离居民的麦田。</td>
</tr>
<tr>
<td>2. 黑鸢 Milvus migrans</td>
<td>栖息于开阔平原、草地、荒原和低山丘陵地带。</td>
<td>留</td>
<td></td>
<td>国家 II 级</td>
<td>活动范围广，在评价区耕作区上空偶有翱翔，偶尔停歇在大树上等待觅食。</td>
</tr>
<tr>
<td>3. 白尾鹞 Circus c.cyanus</td>
<td>多栖息在开阔地区，常见于农田、草原、湖沼、河谷、海滨以及林缘。</td>
<td>夏</td>
<td></td>
<td>国家 II 级</td>
<td></td>
</tr>
<tr>
<td>4. 鹊鹞 Circus melanoleucos</td>
<td>栖息于开阔的低山丘陵和平原、草地、旷野、河谷、沼泽、林缘灌丛和沼泽草地。</td>
<td>旅</td>
<td></td>
<td>国家 II 级</td>
<td></td>
</tr>
<tr>
<td>省级重点保护野生动物</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. 黑眉晨蛇 Elaphe taeniura</td>
<td>生活于低海拔的平原、丘陵、山地等处，喜活动于林地、农田、草地、灌丛、坟地、河边及住宅区附近。</td>
<td>—</td>
<td></td>
<td>河北省级</td>
<td>评价区农田附近。</td>
</tr>
<tr>
<td>2. 黄鼬 Mustela sibirica</td>
<td>栖息环境极其广泛，常见于森林林缘、灌丛、沼泽、河谷、丘陵和平原等地。</td>
<td>—</td>
<td></td>
<td>河北省级</td>
<td>评价区村庄附近的农田区域。</td>
</tr>
<tr>
<td>中文名、拉丁名</td>
<td>生境</td>
<td>居留</td>
<td>区系</td>
<td>保护等级</td>
<td>分布</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>3. 绿翅鸭 Anas crecca</td>
<td>栖于湖泊、河流、沿海。</td>
<td>夏</td>
<td>古</td>
<td>河北省级</td>
<td>评价区河流等水域</td>
</tr>
<tr>
<td>4. 凤头䴙䴘 Podiceps cristatus</td>
<td>栖息在开阔的平原、湖泊、江河、水塘、水库和沼泽地带</td>
<td>夏</td>
<td>古</td>
<td>河北省级</td>
<td>评价区河流、池塘等水域</td>
</tr>
<tr>
<td>5. 大杜鹃 Cuculus canorus</td>
<td>多栖于森林的树上，又是也活动到旷野及居民区附近的林地。</td>
<td>夏</td>
<td>广</td>
<td>河北省级</td>
<td>评价区内森林中分布</td>
</tr>
<tr>
<td>6. 黑翅长脚鹬 Himantopus himantopus</td>
<td>栖息于开阔平原草地中的湖泊、浅水塘和沼泽地带。</td>
<td>夏</td>
<td>广</td>
<td>河北省级</td>
<td>评价区浅水区域</td>
</tr>
<tr>
<td>7. 夜鹭 Nycticorax nycticorax</td>
<td>栖息于平原、丘陵地带的农田、沼泽、池塘附近的大树、竹林。</td>
<td>夏</td>
<td>广</td>
<td>河北省级</td>
<td>评价区稻田、池塘等水域</td>
</tr>
<tr>
<td>8. 池鹭 Ardeola bacchus</td>
<td>生活、猎食于稻田、池塘、水库等水域，栖息于竹林或树上。</td>
<td>夏</td>
<td>东</td>
<td>河北省级</td>
<td>评价区稻田、池塘等水域</td>
</tr>
<tr>
<td>9. 苍鹭 Ardea cinerea</td>
<td>见于沼泽、稻田、山地、森林和平原荒漠上的水边浅水处和沼泽地带。</td>
<td>夏</td>
<td>古</td>
<td>河北省级</td>
<td>评价区农田附近觅食。</td>
</tr>
<tr>
<td>10. 白鹭 Egretta garzetta</td>
<td>喜稻田、河岸、沙滩、泥滩及沿海小溪流。</td>
<td>留</td>
<td>广</td>
<td>河北省级</td>
<td>评价区农田附近觅食。</td>
</tr>
<tr>
<td>11. 灰头绿啄木鸟 Picus canus</td>
<td>主要栖息于低山阔叶林和混交林，也出现于次生林和林缘地带。秋冬季常出现于路旁、农田边缘疏林，也常到林区附近小林内活动。</td>
<td>留</td>
<td>东</td>
<td>河北省级</td>
<td>评价区林地和部分农田中</td>
</tr>
<tr>
<td>12. 黑卷尾 Dicrurus macrocercus</td>
<td>栖息于开阔山地林缘、平原近溪处，也常见于农田、村落附近的乔木枝上。</td>
<td>夏</td>
<td>广</td>
<td>河北省级</td>
<td>农田村落附近和村屯附近的小块林内，甚至出现在城市公园中的枝上。</td>
</tr>
<tr>
<td>13. 喜鹊 Pica pica</td>
<td>栖息于山地村落、平原林中。常在村庄、田野、山边林缘活动。</td>
<td>留</td>
<td>广</td>
<td>河北省级</td>
<td>评价区草地和村落附近</td>
</tr>
<tr>
<td>14. 灰喜鹊 Cyanopica cyanus</td>
<td>栖息于低山丘陵和山脚平原的次生林和人工林内，也见于田边、地头、路边和村屯附近的小块林内，甚至出现在城市公园中的树上。</td>
<td>留</td>
<td>古</td>
<td>河北省级</td>
<td>评价区草地带的灌丛及农田，村落也有分布</td>
</tr>
<tr>
<td>15. 白头鹎 Pycnonotus sinensis</td>
<td>栖于平原至丘陵的竹林灌丛及疏林地带</td>
<td>夏</td>
<td>东</td>
<td>河北省级</td>
<td></td>
</tr>
</tbody>
</table>

4.2.6.5 工程区生态现状

藻 شيئا退耕还淀生态湿地恢复工程任务为采用近自然的修复方法，恢复淀区水动力条件、保障水质达标、修复湿地生态系统、重现淀区荷塘苇海和湿地风貌。
藻苇淀退耕还淀生态湿地恢复工程实施总面积约50km²，主要建设内容包括水系疏导、内源污染净化、水质提升（含地形营造）、湿地生态恢复、智慧湿地和湿地配套设施工程等。

一期工程范围根据修复的湿地类型分为4个功能区，分别为沟壕湿地区、季节性草本沼泽区、草本滩涂湿地区和湖泊湿地区。其中沟壕湿地1.35km²、季节性草本沼泽1.35km²、草本滩涂湿地1.55km²，湖泊湿地1.67km²。

本区域地势相对较高，常年无水，施工区域主要为农业植被及常见的农田杂草灌草丛，常见的农作物为小麦、玉米、水稻等；农田杂草植物常见有刺儿菜、白茅等；区域内沟渠中亦有芦苇、狐尾藻、菹草等沼泽水生植物零星分布。

水系疏导

内源污染净化

水质提升

生态恢复

智慧湿地

沟壕湿地区

水系疏导

水系疏导

内源污染净化

水质提升

生态恢复

智慧湿地

本区域地势相对较高，常年无水，施工区域主要为农业植被及常见的农田杂草灌草丛，常见的农作物为小麦、玉米、水稻等；农田杂草植物常见有刺儿菜、白茅等；区域内沟渠中亦有芦苇、狐尾藻、菹草等沼泽水生植物零星分布。

水系疏导工程区域人为活动强度大，分布野生动物主要包括爬行类的丽斑麻蜥等；鸟类多为傍人活动的鸣禽，如麻雀（Passer montanus）、喜鹊。鸟类共有18种，分别为混凝土料、3618kg。设置人工鱼巢30个。
a) 季节性草本沼泽区

本区域紧挨沟壕湿地区，现状为季节性淹没，枯水期主要为耕地，丰水期季节性淹没。沼泽植被较为发育，常见的沼泽水生植物有芦苇、扁秆荆三棱、香蒲、沼泽、菌菇菜、红蓼、菰等。

本区域紧挨沟壕湿地区，分布野生动物主要包括两栖类的中华蟾蜍、花背蟾蜍；爬行类的丽斑麻蜥、黄脊游蛇等；鸟类多为傍人生活的鸣禽，如白鹡鸰、白鹭、喜鹊、乌鸫（Turdus merula）、珠颈斑鸠、灰喜鹊等；哺乳类主要有黄鼬、褐家鼠、小家鼠等。

b) 草本滩涂湿地

草本滩涂湿地区域现状主要为水域主要植被为沼泽水生植被，常见的植物有芦苇、香蒲、菰菜、菹草、浮萍等。

本区域部分区域为水域，人为干小较小，分布野生动物主要包括两栖类的黑斑侧褶蛙等；鸟类中的普通翠鸟、白鹳等傍水型鸣禽，白鹭、池鹭等涉禽以及区域分布数量较多的喜鹊、珠颈斑鸠等；哺乳类以部分小型啮齿动物为主，如褐家鼠、
小家鼠等。

![现场照片](c)

c) 湖泊湿地区

本区域现状为常年淹没状态，区域主要为水生植被，常见的植物有微齿眼子菜、金鱼藻、竹叶眼子菜、浮萍、槐叶萍等。

本区域现状分布野生动物主要包括两栖类的黑斑侧褶蛙、花背蟾蜍等；鸟类中的普通翠鸟、白鹤鸥等傍水型鸣禽，绿翅鸭、斑嘴鸭、小䴙䴘等游禽，黑翅长脚鹬、白骨顶等涉禽；哺乳类以部分小型啮齿动物为主，如褐家鼠、小家鼠等。

![现场照片](d)

d) 临时施工场地

本工程所涉及的施工场地主要包括：施工营地、综合仓库、施工设备停放场等。

施工区内靠南面的高程区（稻田区）可用于集中布置施工营地、综合仓库、机械设备停放场和物资堆放场等施工场地。

表 4.2.6-10 施工营地生态现状

118
4.2.6.6 水生生物现状

a) 样点布设

根据项目区现场水系情况，设计一期项目区位置在藻萓淀西部偏南，内以旱地、水田、荷塘三类生境为主。其南部地势相对较高，主要为旱田和水稻田；北部地势较低，主要为荷塘和水面。

2020年4月调查人员对项目区进行了水生生物调查，本次水生生物调查共设置12个采样点，其中在南部沟渠设置2个水生采样点；在南部旱田和水稻田设置2个采样点；在北部荷塘和水面设置3个采样点；在入淀河流汇合口处设置3个采样点，分别为瀑河、府河和曹家沟；在项目区南部外围东侧设置1个采样点；在项目区外围北部东侧设置1个采样点；各采样点环境因子见表4.2.6-11。

<table>
<thead>
<tr>
<th>采样点</th>
<th>经纬度</th>
<th>气温（℃）</th>
<th>水温（℃）</th>
<th>水深（m）</th>
<th>pH值</th>
<th>流速（m/s）</th>
<th>透明度（cm）</th>
<th>底质</th>
</tr>
</thead>
<tbody>
<tr>
<td>南部沟渠</td>
<td>1</td>
<td>115°48′33.41″N,38°53′37.15″E</td>
<td>24</td>
<td>21</td>
<td>2</td>
<td>6.7</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>115°49′9.20″N,38°53′49.84″E</td>
<td>21</td>
<td>20</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>南部旱田和水稻田</td>
<td>3</td>
<td>115°48′40.54″N,38°54′18.21″E</td>
<td>23</td>
<td>21</td>
<td>1</td>
<td>6.5</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>115°49′4.95″N,38°54′15.33″E</td>
<td>20</td>
<td>20</td>
<td>1</td>
<td>6.5</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>采样点</td>
<td>经纬度</td>
<td>气温（℃）</td>
<td>水温（℃）</td>
<td>水深（m）</td>
<td>pH 值</td>
<td>流速（m/s）</td>
<td>透明度（cm）</td>
<td>底质</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>-------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>5 北部荷塘和水面</td>
<td>115°49′43.57″N, 38°54′37.21″E</td>
<td>27</td>
<td>24</td>
<td>5</td>
<td>7.0</td>
<td>0</td>
<td>50</td>
<td>淤泥</td>
</tr>
<tr>
<td>6 北部荷塘和水面</td>
<td>115°49′47.90″N, 38°54′59.09″E</td>
<td>28</td>
<td>24</td>
<td>5</td>
<td>7.0</td>
<td>0</td>
<td>50</td>
<td>淤泥</td>
</tr>
<tr>
<td>7 北部荷塘和水面</td>
<td>115°48′35.83″N, 38°54′56.92″E</td>
<td>28</td>
<td>24</td>
<td>5</td>
<td>7.0</td>
<td>0</td>
<td>50</td>
<td>淤泥</td>
</tr>
<tr>
<td>8 府河</td>
<td>115°48′36.00″N, 38°53′26.98″E</td>
<td>23</td>
<td>20</td>
<td>3</td>
<td>6.8</td>
<td>0</td>
<td>30</td>
<td>淤泥</td>
</tr>
<tr>
<td>9 府河</td>
<td>115°48′19.83″N, 38°54′38.05″E</td>
<td>24</td>
<td>22</td>
<td>0.5</td>
<td>6.8</td>
<td>0</td>
<td>20</td>
<td>淤泥</td>
</tr>
<tr>
<td>10 府河</td>
<td>115°48′47.03″N, 38°55′17.12″E</td>
<td>28</td>
<td>24</td>
<td>2</td>
<td>7.0</td>
<td>0</td>
<td>30</td>
<td>淤泥</td>
</tr>
<tr>
<td>11 工程区外围</td>
<td>115°49′18.47″N, 38°53′30.72″E</td>
<td>18</td>
<td>20</td>
<td>2</td>
<td>6.8</td>
<td>0</td>
<td>20</td>
<td>淤泥</td>
</tr>
<tr>
<td>12 工程区外围</td>
<td>115°50′27.76″N, 38°54′49.71″E</td>
<td>25</td>
<td>22</td>
<td>5</td>
<td>6.3</td>
<td>0</td>
<td>50</td>
<td>淤泥</td>
</tr>
</tbody>
</table>
图 4.2.6-1 现场调查水系现状图

南部沟渠 1

南部沟渠 2
<table>
<thead>
<tr>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>北部荷塘和水面</td>
<td>府河</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>曹家沟</td>
<td>瀑河</td>
</tr>
</tbody>
</table>
b) 浮游植物

1) 种类组成

2020年4月，通过对采集样品的室内鉴定，12个采样点共检出浮游藻类植物5门39种（属）。其中绿藻门种类最多，17种（属），占总种类数的43.59%，其次是硅藻门，为14种，蓝藻门5种，裸藻门2种，隐藻门1种。常见物种为蓝藻门的拟鱼腥藻（*Anabaenopsis* sp.），硅藻门的颗粒直链藻最窄变种（*Melosira granulata* var.angustissima）、尖针杆藻（*Synedra acus*）、舟形藻（*Navicula* sp.），绿藻门的单角盘星藻（*Pediastrum simplex*）、小球藻（*Chlorella* sp.）、狭形纤维藻（*Ankistrodesmus angustus*），裸藻门的囊裸藻（*Trachelomonas* sp.）和隐藻门的卵形隐藻（*Cryptomonas ovata*）等。

2) 密度和生物量

各采样点藻类的密度和生物量见表4.2.6-12。各采样点平均密度为
46.91×10^{4} ind./L，其中绿藻门平均密度最多为 23.10×10^{4} ind./L，硅藻平均密度其次为 15.21×10^{4} ind./L。各采样点平均生物量为 0.754 mg/L，其中硅藻门最多为 0.371 mg/L；绿藻门为 0.288 mg/L。各采样点中，曹家沟的浮游植物密度最大，为 67.28×10^{4} ind./L，其次为藻苂淀南部旱田和水稻田，为 53.22×10^{4} ind./L，工程区外围浮游植物密度为 50.21×10^{4} ind./L，藻苂淀南部沟渠浮游植物密度为 49.21×10^{4} ind./L，瀑河浮游植物密度为 45.19×10^{4} ind./L，藻苂淀北部荷塘和水面浮游植物密度为 34.14×10^{4} ind./L，府河浮游植物密度最低，为 29.12×10^{4} ind./L。浮游植物生物量以曹家沟采样点最高，为 1.392 mg/L，其次为工程区外围，1.051 mg/L，藻苂淀北部荷塘和水面浮游植物密度最低，为 0.307 mg/L，各采样点浮游植物密度和生物量差距不明显。

表 4.2.6-12 各采样点浮游植物密度（×10^{4} ind./L）和生物量（mg/L）

<table>
<thead>
<tr>
<th>种类</th>
<th>数量</th>
<th>南部沟渠</th>
<th>南部旱田和水稻</th>
<th>北部荷塘和水面</th>
<th>府河</th>
<th>曹家沟</th>
<th>瀑河</th>
<th>工程区外围</th>
<th>平均值</th>
</tr>
</thead>
<tbody>
<tr>
<td>硅藻门</td>
<td>密度</td>
<td>16.07</td>
<td>17.07</td>
<td>12.05</td>
<td>11.05</td>
<td>15.06</td>
<td>24.10</td>
<td>11.05</td>
<td>15.21</td>
</tr>
<tr>
<td></td>
<td>生物量</td>
<td>0.379</td>
<td>0.410</td>
<td>0.200</td>
<td>0.287</td>
<td>0.329</td>
<td>0.627</td>
<td>0.366</td>
<td>0.371</td>
</tr>
<tr>
<td>绿藻门</td>
<td>密度</td>
<td>25.10</td>
<td>23.10</td>
<td>15.06</td>
<td>10.04</td>
<td>45.19</td>
<td>14.06</td>
<td>29.12</td>
<td>23.10</td>
</tr>
<tr>
<td></td>
<td>生物量</td>
<td>0.243</td>
<td>0.121</td>
<td>0.025</td>
<td>0.035</td>
<td>0.995</td>
<td>0.052</td>
<td>0.548</td>
<td>0.288</td>
</tr>
<tr>
<td>蓝藻门</td>
<td>密度</td>
<td>6.03</td>
<td>9.04</td>
<td>4.02</td>
<td>4.02</td>
<td>5.02</td>
<td>4.02</td>
<td>6.03</td>
<td>5.45</td>
</tr>
<tr>
<td></td>
<td>生物量</td>
<td>0.004</td>
<td>0.009</td>
<td>0.002</td>
<td>0.002</td>
<td>0.007</td>
<td>0.002</td>
<td>0.007</td>
<td>0.005</td>
</tr>
<tr>
<td>其他</td>
<td>密度</td>
<td>2.01</td>
<td>4.02</td>
<td>3.01</td>
<td>4.02</td>
<td>2.01</td>
<td>3.01</td>
<td>4.02</td>
<td>3.16</td>
</tr>
<tr>
<td></td>
<td>生物量</td>
<td>0.050</td>
<td>0.100</td>
<td>0.080</td>
<td>0.100</td>
<td>0.060</td>
<td>0.110</td>
<td>0.131</td>
<td>0.090</td>
</tr>
<tr>
<td>合计</td>
<td>密度</td>
<td>49.21</td>
<td>53.22</td>
<td>34.14</td>
<td>29.12</td>
<td>67.28</td>
<td>45.19</td>
<td>50.21</td>
<td>46.91</td>
</tr>
<tr>
<td></td>
<td>生物量</td>
<td>0.675</td>
<td>0.640</td>
<td>0.307</td>
<td>0.424</td>
<td>1.392</td>
<td>0.791</td>
<td>1.051</td>
<td>0.754</td>
</tr>
</tbody>
</table>

c) 浮游动物

1）种类组成

2020年4月，12个采样点共检出浮游动物4类22种，其中轮虫种类最多，为9种，占总数的40.91%；其次为原生动物5种，占总数的22.73%；枝角类和桡足类各4种，均占总数的18.18%。常见物种为球形砂壳虫（*Difflugia globulosa*），
拟铃壳虫（Tintinnopsis sp.）、晶囊轮虫（Asplanchna sp.）、萼花臂尾轮虫（Brachionus calyciflorus）、螺形龟甲轮虫（Keratella cochlearis）、长额象鼻溞（Bosmina longirostris）、桡足类无节幼体（Nauplius sp.）等为优势种。

2) 生物量和密度
各采样点浮游动物平均密度为186.43 ind./L，平均生物量为0.646 mg/L，浮游动物密度以原生动物最大，为78.51 ind./L，其次为轮虫，74.83 ind./L；生物量以枝角类所占比例最大，为0.380 mg/L，其次为桡足类，为0.250 mg/L。

各采样点中工程区外围的浮游动物密度最大，为259.20 ind./L，其次为藻苲淀南部旱田和水稻田，为223.20 ind./L，藻苲淀南部渠道浮游动物密度为197.20 ind./L，瀑河浮游动物密度为196.00 ind./L，府河浮游动物密度为183.60 ind./L，藻苲淀北部荷塘和水面为124.00 ind./L，曹家沟采样点为121.80 ind./L；各采样点中藻苲淀南部旱田和水稻田浮游动物生物量最高，为1.488 mg/L，其次为藻苲淀南部沟渠，为0.679 mg/L，工程区外围浮游动物生物量为0.644 mg/L，藻苲淀北部荷塘和水面为0.483 mg/L。评价区浮游动物密度和生物量见表4.2.6-13。

<table>
<thead>
<tr>
<th>种类</th>
<th>数量</th>
<th>南部沟渠</th>
<th>南部旱田和水稻田</th>
<th>北部荷塘和水面</th>
<th>府河</th>
<th>曹家沟</th>
<th>瀑河</th>
<th>工程区外围</th>
<th>平均值</th>
</tr>
</thead>
<tbody>
<tr>
<td>原生动物</td>
<td>密度</td>
<td>81.20</td>
<td>86.80</td>
<td>49.60</td>
<td>97.20</td>
<td>58.00</td>
<td>112.00</td>
<td>64.80</td>
<td>78.51</td>
</tr>
<tr>
<td></td>
<td>生物量</td>
<td>0.002</td>
<td>0.003</td>
<td>0.001</td>
<td>0.003</td>
<td>0.002</td>
<td>0.003</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>轮虫</td>
<td>密度</td>
<td>81.20</td>
<td>74.40</td>
<td>49.60</td>
<td>64.80</td>
<td>46.40</td>
<td>61.60</td>
<td>145.80</td>
<td>74.83</td>
</tr>
<tr>
<td></td>
<td>生物量</td>
<td>0.015</td>
<td>0.015</td>
<td>0.013</td>
<td>0.019</td>
<td>0.007</td>
<td>0.008</td>
<td>0.021</td>
<td>0.014</td>
</tr>
<tr>
<td>枝角类</td>
<td>密度</td>
<td>11.60</td>
<td>24.80</td>
<td>12.40</td>
<td>10.80</td>
<td>5.80</td>
<td>11.20</td>
<td>16.20</td>
<td>13.26</td>
</tr>
<tr>
<td></td>
<td>生物量</td>
<td>0.267</td>
<td>0.838</td>
<td>0.419</td>
<td>0.248</td>
<td>0.133</td>
<td>0.379</td>
<td>0.373</td>
<td>0.380</td>
</tr>
<tr>
<td>桡足类</td>
<td>密度</td>
<td>23.20</td>
<td>37.20</td>
<td>12.40</td>
<td>10.80</td>
<td>11.60</td>
<td>11.20</td>
<td>32.40</td>
<td>19.83</td>
</tr>
<tr>
<td></td>
<td>生物量</td>
<td>0.394</td>
<td>0.632</td>
<td>0.050</td>
<td>0.184</td>
<td>0.197</td>
<td>0.045</td>
<td>0.248</td>
<td>0.250</td>
</tr>
<tr>
<td>合计</td>
<td>密度</td>
<td>197.20</td>
<td>223.20</td>
<td>124.00</td>
<td>183.60</td>
<td>121.80</td>
<td>196.00</td>
<td>259.20</td>
<td>186.43</td>
</tr>
<tr>
<td></td>
<td>生物量</td>
<td>0.679</td>
<td>1.488</td>
<td>0.483</td>
<td>0.454</td>
<td>0.339</td>
<td>0.435</td>
<td>0.644</td>
<td>0.646</td>
</tr>
</tbody>
</table>

d) 底栖动物
1) 种类组成

本次现场调查 12 个采样点共检出底栖动物 18 种，其中环节动物门 2 种，软体动物门 12 种，节肢动物门 4 种。环节动物常见种类为霍甫水丝蚓（*Limnodrilus hoffmeisteri*）；软体动物常见种类为中华圆田螺（*Cipangopaludina chinensis*）、中华圆田螺（*Cipangopaludina cathayensis*）；节肢动物常见种类主要为水生昆虫中的摇蚊科幼虫（*Chironomus sp.*）、日本沼虾（*Macrobrachium nipponense*）。

2) 密度和生物量

工程评价区底栖动物平均密度为 95.14ind./m²，平均生物量为 38.75g/m²，底栖动物密度以节肢动物最大，为 78.14 ind./m²，其次为软体动物，为 14.57 ind./m²；生物量以软体动物最大，为 25.59 g/m²，其次为节肢动物，为 12.27 g/m²，评价区底栖动物密度和生物量见下表 4.2.6-14。

表 4.2.6-14 评价区底栖动物密度（ind./m²）和生物量（g/m²）

<table>
<thead>
<tr>
<th>种类</th>
<th>数量</th>
<th>南部沟渠</th>
<th>南部旱田和水稻田</th>
<th>北部荷塘和水面</th>
<th>府河</th>
<th>曹家沟</th>
<th>瀛河</th>
<th>工程区外围</th>
<th>平均值</th>
</tr>
</thead>
<tbody>
<tr>
<td>环节动物密度</td>
<td>2.00</td>
<td>4.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>3.00</td>
<td>2.43</td>
<td></td>
</tr>
<tr>
<td>生物量</td>
<td>0.68</td>
<td>1.54</td>
<td>0.61</td>
<td>0.63</td>
<td>1.25</td>
<td>0.66</td>
<td>0.89</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>软体动物密度</td>
<td>15.00</td>
<td>18.00</td>
<td>12.00</td>
<td>16.00</td>
<td>13.00</td>
<td>12.00</td>
<td>16.00</td>
<td>14.57</td>
<td></td>
</tr>
<tr>
<td>生物量</td>
<td>24.32</td>
<td>28.34</td>
<td>20.92</td>
<td>30.54</td>
<td>23.75</td>
<td>22.30</td>
<td>28.96</td>
<td>25.59</td>
<td></td>
</tr>
<tr>
<td>节肢动物密度</td>
<td>78.00</td>
<td>89.00</td>
<td>63.00</td>
<td>81.00</td>
<td>94.00</td>
<td>67.00</td>
<td>75.00</td>
<td>78.14</td>
<td></td>
</tr>
<tr>
<td>生物量</td>
<td>16.78</td>
<td>10.12</td>
<td>7.98</td>
<td>11.74</td>
<td>13.56</td>
<td>9.87</td>
<td>15.82</td>
<td>12.27</td>
<td></td>
</tr>
<tr>
<td>合计密度</td>
<td>95</td>
<td>111</td>
<td>77</td>
<td>99</td>
<td>109</td>
<td>81</td>
<td>94</td>
<td>95.14</td>
<td></td>
</tr>
<tr>
<td>生物量</td>
<td>41.78</td>
<td>40</td>
<td>29.51</td>
<td>42.91</td>
<td>38.56</td>
<td>32.83</td>
<td>45.67</td>
<td>38.75</td>
<td></td>
</tr>
</tbody>
</table>

e) 水生维管植物

通过现场调查，结合评价区内关于水生维管植物的科考资料，评价区分布的水生维管植物有 4 类 40 种，其中沉水植物 14 种，挺水植物 18 种，漂浮植物 43 种，浮叶植物 5 种。2020 年 4 月，现场调查评价区水生维管植物种类以苦草、金鱼藻、穗状狐尾藻、芦苇、香蒲、莲等为优势种，其中在藻苲淀北部荷塘和水面水生植物较丰富，以莲、苦草、金鱼藻、穗状狐尾藻、芦苇、香蒲为主，生物
量较大；在藻苲淀南部沟渠以金鱼藻、穗状狐尾藻、喜旱莲子草等为主；在藻苲淀南部旱田和水稻田中水生植物较少，主要为假稻、稗等挺水植物；瀑河和曹家沟以金鱼藻、苦草、穗状狐尾藻、芦苇等为主；府河以芦苇等挺水植物为主

表 4.2.6-15 评价区水生维管束植物名录

<table>
<thead>
<tr>
<th>生态类型</th>
<th>种名</th>
<th>藻苲淀</th>
<th>瀑河</th>
<th>曹家沟</th>
<th>府河</th>
</tr>
</thead>
<tbody>
<tr>
<td>I 沉水植物</td>
<td>1. 菖草 Potamogeton crispus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. 竹叶眼子菜（Potamogeton wrightii）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. 簇齿眼子菜 Potamogeton pectinatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. 小眼子菜（Potamogeton pusillus）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. 微齿眼子菜群落 Potamogeton maackianus</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. 狐尾藻 Myriophyllum verticillatum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. 穗状狐尾藻 Myriophyllum spicatum</td>
<td>+ + + +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. 金鱼藻 Ceratophyllum demersum</td>
<td>+ + + +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. 大茨藻 Najas marina</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10. 小茨藻 Najas minor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11. 黑藻 Hydrilla verticillata</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12. 苦草 Vallisneria natans</td>
<td>+ + +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13. 蓟草 Potamogeton crispus</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14. 狸藻 Utricularia vulgaris</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II 挺水植物</td>
<td>15. 芦苇 Phragmites australis</td>
<td>+ + + +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16. 香蒲 Typha orientalis</td>
<td>+ + +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>生态类型</td>
<td>种名</td>
<td>藻苇淀</td>
<td>北部荷塘和水面</td>
<td>南部沟渠</td>
<td>南部旱田和水稻田</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
<td>--------</td>
<td>----------------</td>
<td>---------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>狭叶香蒲 Typha angustata</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>水芹 Oenanthe javanica</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>菰 Zizania latifolia</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>酸模叶蓼 Polygonum lapathifolium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>两栖蓼 Polygonum amphibium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>水蓼 Polygonum hydropiper</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>红蓼 Polygonum orientale</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>莲 Nelumbo nucifera</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>鹿草 Scirpus triqueter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>稗 Echinochloa crusgalli</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>褐穗莎草 Cyperus fuscus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>扁秆荆三棱 Schoenoplectus planiculmis</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td>小灯心草 Juncus bufonius</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td>水葱 Scirpus validus</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td>萨叶蒜 Ranunculus chinensis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>32.</td>
<td>泽泻 Alisma orientalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>漂浮植物</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.</td>
<td>浮萍 Lemna minor</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>34.</td>
<td>紫萍 Spirodela polyrrhiza</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.</td>
<td>槐叶萍 Salvinia natans</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>浮叶植物</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.</td>
<td>莉实 Euryale ferox</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37.</td>
<td>野菱 Trapa incisa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.</td>
<td>菩菜 Nymphoides peltatum</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>生态类型</td>
<td>种名</td>
<td>芦苇淀</td>
<td>南部旱田和水稻田</td>
<td>瀛河</td>
<td>曹家沟</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>--------</td>
<td>-----------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>北部荷塘和水面</td>
<td>南部沟渠</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39. 水鳖 Hydrocharis dubia</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40. 睡莲 Nymphaea teltragona</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

f) 鱼类

1) 种类组成

（1）历史情况介绍

拟建项目涉及白洋淀国家级水产种质资源保护区非养殖区。根据《白洋淀国家级水产种质资源保护区科考报告》，白洋淀历史上曾有鱼类11目17科30属54种；现有鱼类7目12科30属33种。从生态类型看，主要有两类：一类是定居性鱼类，如鲤、鲫、黄颡鱼、乌鳢、鳜、马口鱼；二类是江河（湖）洄游性鱼类，如草、鲢、鳙、阔鱼、大银鱼、鳗鲡、青鱼、鲚鱼等，由于淀区水域缺乏繁殖条件，大部分已灭绝，现存多为人工放流品种。从历次调查显示，减少的品种除了溯河性鱼类鳗鲡、棱鮥、鲈鱼、暗纹东方鲀等，鲚、青鱼、鲻、赤眼鳟等也相继消失。鱼类组成和数量减少原因是多方面，包括自然的改变和人类活动干扰，尤其是沿河沿湖大量闸坝兴建，六七十年代的“围湖造田”以及破坏性渔具渔法的使用，致使洄游、半洄游性鱼类以及沿岸带产卵的定居性鱼类资源锐减，形成了目前白洋淀鱼类的格局。2000-2009年河北省政府扶持白洋淀增殖渔业发展，累积投入草鱼、鲤、鲢、鳙、鲂、黄颡鱼等鱼种500万尾。白洋淀渔业资源通过数十年繁殖保护、增殖放流发展，使白洋淀资源保持相对稳定，特别是青虾、黄颡鱼、鳜、乌鳢产卵场、育肥场的保护。
表 2000-2009 年白洋淀人工放流费用和种类

<table>
<thead>
<tr>
<th>年份</th>
<th>月份</th>
<th>费用（万元）</th>
<th>种类、数量</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>4</td>
<td>5</td>
<td>鲢、鳙、鲂、鲤、大眼幼体</td>
</tr>
<tr>
<td>2001</td>
<td>5</td>
<td>15</td>
<td>鲢、鳙、草、鲤、扣蟹</td>
</tr>
<tr>
<td>2002</td>
<td>4、10</td>
<td>30</td>
<td>鲢、鳙、鲤、大眼幼体</td>
</tr>
<tr>
<td>2003</td>
<td>5</td>
<td>50</td>
<td>鲢、鳙、鲂</td>
</tr>
<tr>
<td>2004</td>
<td>11</td>
<td>30</td>
<td>鲢、鳙、草、鲫、鲤</td>
</tr>
<tr>
<td>2005</td>
<td>4、5</td>
<td>40</td>
<td>鲢、鳙、鲂、鲤、大眼幼体</td>
</tr>
<tr>
<td>2006</td>
<td>11</td>
<td>60</td>
<td>鲢、鳙、草、鲤、大眼幼体</td>
</tr>
<tr>
<td>2007</td>
<td>5</td>
<td>180</td>
<td>鲢、鳙、草、鲂、鲤、大眼幼体、扣蟹</td>
</tr>
<tr>
<td>2008</td>
<td>10</td>
<td>165</td>
<td>鲢、鳙、草、鲤、扣蟹、大眼幼体</td>
</tr>
<tr>
<td>2009</td>
<td>5</td>
<td>75</td>
<td>鲢、鳙、草、黄颡鱼、扣蟹、大眼幼体</td>
</tr>
</tbody>
</table>

（2）现状鱼类情况

根据《白洋淀省级自然保护区调整部分科学考察报告 (2012 年)》等文献资料及调查人员 2020 年 4 月现场鱼类资源调查结果，统计出评价区内鱼类有 4 目 10 科 19 种，其中鲤形目鱼类最多有 11 种，占 57.89%；其次是鲈形目 5 种，占 26.32%；鲇形目 2 种，占 10.53%；合鳃目 1 种，占 5.26%。现场调查，优势种为鲤、小黄黝鱼、子陵吻虾虎鱼、麦穗鱼、圆尾斗鱼等，数量较多。

表 4.2.6-16 评价区鱼类名录

<table>
<thead>
<tr>
<th>种类</th>
<th>学名</th>
<th>白洋淀省级自然保护区调整部分科学考察报告 (2012 年)</th>
<th>2020年4月</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 鲤形目</td>
<td>CYPRINIFORMES</td>
<td>白洋淀省级自然保护区调整部分科学考察报告 (2012 年)</td>
<td>2020年4月</td>
</tr>
<tr>
<td>（一）鲤科</td>
<td>Cyprinidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. 鲤</td>
<td>Cyprinus carpio</td>
<td>+</td>
<td>*</td>
</tr>
<tr>
<td>2. 鲫</td>
<td>Carassius auratus</td>
<td>+</td>
<td>△</td>
</tr>
<tr>
<td>3. 麦穗鱼</td>
<td>Pseudorasbora parva</td>
<td>+</td>
<td>△</td>
</tr>
<tr>
<td>4. 棒花鱼</td>
<td>Abbotina rivularis</td>
<td>+</td>
<td>△</td>
</tr>
<tr>
<td>5. 鱼</td>
<td>Hemiculter leucisculus</td>
<td>+</td>
<td>△</td>
</tr>
<tr>
<td>6. 中华鳑鲏</td>
<td>Rhodeus sinensis</td>
<td>+</td>
<td>△</td>
</tr>
<tr>
<td>种类</td>
<td>学名</td>
<td>白洋淀省级自然保护区调整部分科学考察报告（2012年）</td>
<td>2020年4月</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>7. 草鱼</td>
<td>Ctenopharyngodon idellus</td>
<td>+</td>
<td>*</td>
</tr>
<tr>
<td>8. 鲢</td>
<td>Hypophthalmichthys molitrix</td>
<td>+</td>
<td>*</td>
</tr>
<tr>
<td>9. 鳜</td>
<td>Hypophthalmichthys nobilis</td>
<td>+</td>
<td>*</td>
</tr>
<tr>
<td>10. 团头鲂</td>
<td>Megalobrama amblycephala</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>（二）鳅科</td>
<td>Cobitidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. 泥鳅</td>
<td>Misgurnus anguillicaudatus</td>
<td>+</td>
<td>△</td>
</tr>
<tr>
<td>II 鳊形目</td>
<td>SILURIFORME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>（三）鳅科</td>
<td>Siluridae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. 鳊</td>
<td>Silurus asotus</td>
<td>+</td>
<td>*</td>
</tr>
<tr>
<td>（四）鲿科</td>
<td>Bagridae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. 黄颡鱼</td>
<td>Pelteobagrus fulvidraco</td>
<td>+</td>
<td>△</td>
</tr>
<tr>
<td>III 合鳃目</td>
<td>SYNBRANCHIFORMES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>（五）合鳃科</td>
<td>Symbranchidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. 黄鳝</td>
<td>Monopterus albus</td>
<td>+</td>
<td>△</td>
</tr>
<tr>
<td>IV 鲈形目</td>
<td>PERCIFORMES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>（六）丝足鲈科</td>
<td>Osphronemidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. 圆尾斗鱼</td>
<td>Macropodus chinensis</td>
<td>+</td>
<td>△</td>
</tr>
<tr>
<td>（七）𫚥虎鱼科</td>
<td>Gobiidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. 子陵吻𫚥虎鱼</td>
<td>Rhinogobius giurinus</td>
<td>+</td>
<td>△</td>
</tr>
<tr>
<td>（八）塘鳢科</td>
<td>Eleotridae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. 小黄鳢鱼</td>
<td>Micropercops swinhonis</td>
<td>+</td>
<td>△</td>
</tr>
<tr>
<td>（九）鳢科</td>
<td>Ophiocephalidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. 乌鳢</td>
<td>Channa argus</td>
<td>+</td>
<td>△</td>
</tr>
<tr>
<td>（十）真鲈科</td>
<td>Percichthyidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. 鳜</td>
<td>Siniperca chuatsi</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

注释：“+”为资料记录种，“△”为本次现场调查物种，“*”为本次访问调查物种。
鱼类区系组成及特点

评价区19种鱼类可以划分为以下4个区系复合体：

（1）中国平原区系复合体：以草鱼、团头鲂等为代表种类，为评价区的鱼类区系主要复合体。该复合体的鱼类很大部份产漂流性鱼卵，一部分鱼虽产粘性卵但粘性不大，卵产出后附着在物体上，不久即脱离，顺水漂流并发育；该复合体的鱼类都对环境要求较高，必须满足一定的水温、水位、流速、流态、流程等水文条件才能完成繁殖和孵化。许多种类在水位升高时从湖泊进入江河产卵，幼鱼和产过卵的亲鱼入湖泊育肥，如“四大家鱼”。

（2）南方平原区系复合体：代表种类有乌鳢（Channa argus）、黄鳝（Monopterus albus）等。这类鱼鱼身常具拟草色，身上花纹较多，有些种类具棘和吸取游离氧的副呼吸器官，如鳢的鳃上器，黄鳝的口腔表皮等。此类鱼喜暖水，在北方选择温度最高的盛夏繁殖，多能保护鱼卵和幼鱼，分布在东亚，愈往低纬度地带种类愈多，说明此类鱼适合在炎热气候、多水草易缺氧的浅水湖泊池沼中生活。

（3）晚第三纪早期区系复合体：其种类有鲤（Cyprinus carpio）、鲫（Carassius auratus）、鲇（Silurus asotus）、泥鳅（Misgurnas anguillicaudatus）等。它们共同特征是视觉不发达，嗅觉发达，以底栖生物为食者较多，适应于浑浊的水中生活。

（4）北方平原区系复合体：代表种类有麦穗鱼（Pseudorasbora parva）、中华花鳅（Cobitis sinensis）。它们耐寒，较耐盐碱，产卵季节较早，在地层中出现得比中国平原复合体靠下，在高纬度分布较广，随着纬度的降低，这一复合体种的数目和种群数量逐渐减少。

3）食性类型

根据调查区成鱼的摄食对象，可以将调查区鱼类划分为3类：

（1）植食性鱼类包括以维管植物为食的草鱼。

（2）肉食性鱼类包括以底栖动物和鱼类为主要食物的乌鳢等。

（3）杂食性鱼类该类鱼食谱广，包括小型动物、植物及其碎屑，其食性在不同环境水体和不同季节有明显变化。包括鲤、鲫、泥鳅等。

4）产卵类型

调查水域分布鱼类依繁殖习性可分为4个类群。
本水域鱼类绝大多数鱼类为产粘沉性卵类群。这一类群包括包括黄颡鱼（Pelteobagrus fulvidraco）、鲤、鲫、泥鳅等，其产卵季节多为春夏间，也有部分种类晚至秋季，且对产卵水域流态底质有不同的适应性，多数种类都需要一定的流水刺激。产出的卵粘附于石砾、水草发育。少数鱼类产卵时不需要水流刺激，可在静缓流水环境下繁殖，产粘性卵，其卵有的黏附于水草发育，如鲤、鲫、泥鳅等。

（2）产漂流性卵类群

产漂流性卵鱼类，产卵需要湍急的水流条件，通常在汛期洪水发生后产卵。这一类鱼卵比重略大于水，但产出后卵膜吸水膨胀，在水流的外力作用下，鱼卵悬浮在水层中顺水漂流。孵化出的早期仔鱼，仍然要顺水漂流，待身体发育到具备较强的溯游能力后，才能游到浅水或缓流处停歇。这类鱼有草鱼等。

（3）产浮性卵类群

乌鳢、鳜等鱼类的卵具油球，在水中漂浮发育。

（4）特异性产卵类群

鳑鲏多产卵于蚌类的鳃瓣中发育。

5）珍稀、濒危及保护鱼类

评价区内无国家级重点保护鱼类，也无河北省重点保护鱼类。

6）鱼类重要生境

（1）产卵场

评价区藻苇淀大部分鱼类产粘草基质卵，繁殖期在 3～5 月份，主要有鲤、鲫等。鲤、鲫等产草基质卵鱼类的产卵场，水生植物是他们的重要产卵基质，藻苇淀北部荷塘和水面分布有大量沉水植物，是附近鲤、鲫等产粘性卵的鱼类的产卵场所。鱼类产卵后，受精卵粘附于水生高等植物体上，在良好的溶氧环境中顺利孵化。这种类型的产卵场在工程区分布较多，几乎在整个淀区水面均有分布。因此，评价区内具有适宜作为产粘草基质鱼类的产卵生境，主要分布在工程区内藻苇淀北部荷塘和水面（约 2.17×106 m²）。此外，在工程区内藻苇淀南部沟渠（约 4km），工程区外瀑河（约 7km）、曹家沟（约 2.3 km）等河流，工程区外围沟渠地带（1.7km）均有分布产粘草基质鱼类产卵场。
<table>
<thead>
<tr>
<th>藻苲淀北部荷塘和水面产卵场</th>
<th>藻苲淀南部沟产卵场</th>
<th>工程区外围沟产卵场</th>
</tr>
</thead>
<tbody>
<tr>
<td>瀑河产卵场</td>
<td>曹家沟产卵场</td>
<td></td>
</tr>
</tbody>
</table>

（2）索饵场

鳜属、鳢属、鲇科鱼类等以鱼类为食的索饵场，随其生活习性及摄食鱼群的分布而分布。鲤、鲫等杂食性鱼类索饵场的环境基本特征是缓流或静水，水深0~0.5cm，其间有砾石、礁石、沙质岸边，这些区域易于躲避敌害，同时，这些地方小型饵料丰富，敌害生物少，有利于幼鱼的存活；草鱼等是以摄食水生维管
植物为生的鱼类，索饵场需要有大量的水生维管束植物。现场调查发现工程区内藻荡北部荷塘和水生（约 2.17×10^6 m²）、藻荡南部沟渠（约 4km），工程区外主要沟河（约 7km）、曹家沟（约 2.3 km）等河流，工程区外围沟渠地带（1.7km）均有大面积适宜鲤、鲫等杂食性鱼类索饵的区域。现场调查中采集到较多鲫、小黄䱕等鱼类的幼鱼。

（3）越冬场

鱼类往往进行由浅水生境向深水越冬洄游，方向稳定。越冬场一般位于干流的河床深处或坑穴中，水体宽大而深，一般水深 3～4m 以上，多为河汊、河槽、汊河、回水或微流水或流水，底质多为乱石或礁石，凹凸不平。根据现场调查，藻荡北部荷塘水深较深，能为鱼类提供适宜的越冬场所。

7）现场渔获物调查情况

本次现场调查包括藻荡淀区主要为北部水域，和藻荡连通的瀑河、曹家沟和府河流域，现场调查以地笼和流刺网自主捕捞为主，并收集渔民渔获物进行统计，共调查到鱼类 13 种，分别为鲫、小黄䱕鱼、子陵吻虾虎鱼、麦穗鱼、圆尾斗鱼、泥鳅、乌鳢、中华鲶鱼、棒花鱼、黄颡鱼、黄鳝、翘嘴鲌。现场渔获物中数量上以鲫、小黄䱕鱼、子陵吻虾虎鱼、麦穗鱼、圆尾斗鱼、泥鳅等小型鱼类为主，各占渔获物总尾数的 25.71%、23.82%、15.09%、12.74%、8.49%和 5.42%，其他渔获物数量较少；渔获物重量组成主要以乌鳢、鲫、小黄䱕鱼为主，各占渔获物总重的 31.97%、27.52%、7.08%。

表 4.2.6-17 本次调查渔获物表

<table>
<thead>
<tr>
<th>物种名</th>
<th>拉丁名</th>
<th>样本量（/尾）</th>
<th>总重量（/g）</th>
<th>数量百分比（/%）</th>
<th>重量百分比（/%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.鲫</td>
<td>Cyprinus carpio</td>
<td>109</td>
<td>1639.1</td>
<td>25.71%</td>
<td>27.52%</td>
</tr>
<tr>
<td>2.小黄䱕鱼</td>
<td>Micropercops swinhonis</td>
<td>101</td>
<td>421.5</td>
<td>23.82%</td>
<td>7.08%</td>
</tr>
<tr>
<td>3.子陵吻虾虎鱼</td>
<td>Rhinogobius giurinus</td>
<td>64</td>
<td>295.4</td>
<td>15.09%</td>
<td>4.96%</td>
</tr>
<tr>
<td>4.麦穗鱼</td>
<td>Pseudorasbora parva</td>
<td>54</td>
<td>280.2</td>
<td>12.74%</td>
<td>4.70%</td>
</tr>
<tr>
<td>5.圆尾斗鱼</td>
<td>Macropodus chinensis</td>
<td>36</td>
<td>242</td>
<td>8.49%</td>
<td>4.06%</td>
</tr>
<tr>
<td>6.泥鳅</td>
<td>Misgurnus anguillicaudatus</td>
<td>23</td>
<td>325.6</td>
<td>5.42%</td>
<td>5.47%</td>
</tr>
<tr>
<td>7.乌鳢</td>
<td>Channa argus</td>
<td>13</td>
<td>1904.4</td>
<td>3.07%</td>
<td>31.97%</td>
</tr>
<tr>
<td>物种名</td>
<td>拉丁名</td>
<td>样本量（/尾）</td>
<td>总重量（/g）</td>
<td>数量百分比（/%）</td>
<td>重量百分比（/%）</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>8. 黑</td>
<td>Hemiculter leucisculus</td>
<td>9</td>
<td>117.1</td>
<td>2.12%</td>
<td>1.97%</td>
</tr>
<tr>
<td>9. 中华鱲</td>
<td>Rhodeus sinensis</td>
<td>5</td>
<td>23.5</td>
<td>1.18%</td>
<td>0.39%</td>
</tr>
<tr>
<td>10. 榛花鱼</td>
<td>Abbotina rivularis</td>
<td>3</td>
<td>19.5</td>
<td>0.71%</td>
<td>0.33%</td>
</tr>
<tr>
<td>11. 黄颡鱼</td>
<td>Pelteobagrus fulvidraco</td>
<td>3</td>
<td>159.3</td>
<td>0.71%</td>
<td>2.67%</td>
</tr>
<tr>
<td>12. 黄鳝</td>
<td>Monopterus albus</td>
<td>2</td>
<td>299.3</td>
<td>0.47%</td>
<td>5.03%</td>
</tr>
<tr>
<td>13. 翘嘴鲌</td>
<td>Culter alburnus</td>
<td>2</td>
<td>229.2</td>
<td>0.47%</td>
<td>3.85%</td>
</tr>
<tr>
<td>总计</td>
<td></td>
<td>424</td>
<td>5956.1</td>
<td>100.00%</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

表 4.6.7-18 各水域调查渔获物表（单位：尾）

<table>
<thead>
<tr>
<th>物种名</th>
<th>拉丁名</th>
<th>濠洲淀</th>
<th>瀚河</th>
<th>府河</th>
<th>曹家沟</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 鲫</td>
<td>Cyprinus carpio</td>
<td>75</td>
<td>30</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2. 小黄黝鱼</td>
<td>Micropercops swinhonis</td>
<td>65</td>
<td>28</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3. 子陵吻虾虎鱼</td>
<td>Rhinogobius giurinus</td>
<td>46</td>
<td>10</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>4. 麦穗鱼</td>
<td>Pseudorasbora parva</td>
<td>40</td>
<td>8</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>5. 圆尾斗鱼</td>
<td>Macropodus chinensis</td>
<td>31</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6. 泥鳅</td>
<td>Misgurnus anguillicaudatus</td>
<td>11</td>
<td>9</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7. 乌鳢</td>
<td>Channa argus</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8. 黑</td>
<td>Hemiculter leucisculus</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9. 中华鱲</td>
<td>Rhodeus sinensis</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10. 榛花鱼</td>
<td>Abbotina rivularis</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11. 黄颡鱼</td>
<td>Pelteobagrus fulvidraco</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12. 黄鳝</td>
<td>Monopterus albus</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13. 翘嘴鲌</td>
<td>Culter alburnus</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>总计</td>
<td></td>
<td>296</td>
<td>98</td>
<td>23</td>
<td>7</td>
</tr>
<tr>
<td>鱼类种类</td>
<td>图片</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>鳜</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>鲫</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中华鳑鲏</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>麦穗鱼</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>黄颡鱼</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>小黄.ordinal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>乌鳢</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>泥鳅</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>图片1</td>
<td>图片2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>圆尾斗鱼</td>
<td>黄鳝</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>图片3</th>
<th>图片4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>图片5</th>
<th>图片6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8) 历史渔业资源情况

拟建项目涉及白洋淀国家级水产种质资源保护区非养殖区。根据《白洋淀国家级水产种质资源保护区科考报告》，白洋淀是华北最大的淡水湖泊，淀内水产资源丰富，1950-1989 年全淀水产品捕捞量为 500-8500t/年，正常年份均在 3000t 以上。鱼类是白洋淀捕捞渔业的主体资源，约占捕捞量的 86%。

4.2.6.7 生态环境质量现状

a) 自然体系生物量现状

评价区内各生态类型生物量状况见表 4.2.6-18。

<table>
<thead>
<tr>
<th>生态类型</th>
<th>代表植物</th>
<th>面积 (hm²)</th>
<th>占评价区面积比例 (%)</th>
<th>平均生物量 (t/hm²)</th>
<th>总生物量 (t)</th>
<th>占评价区总生物量比例 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>阔叶林</td>
<td>加杨、小叶杨等</td>
<td>117.69</td>
<td>5.93</td>
<td>34.26</td>
<td>4032.16</td>
<td>33.43</td>
</tr>
<tr>
<td>草丛</td>
<td>红蓼、白茅等</td>
<td>243.18</td>
<td>12.26</td>
<td>8.09</td>
<td>1967.30</td>
<td>16.31</td>
</tr>
<tr>
<td>农作物</td>
<td>水稻、小麦等</td>
<td>726.47</td>
<td>36.63</td>
<td>6.72</td>
<td>4881.86</td>
<td>40.48</td>
</tr>
<tr>
<td>水域滩涂</td>
<td>湿地植被</td>
<td>706.18</td>
<td>35.60</td>
<td>1.67</td>
<td>1179.31</td>
<td>9.78</td>
</tr>
</tbody>
</table>

表 4.2.6-18 评价区内各生态类型的生物量
<table>
<thead>
<tr>
<th>建设及未利用地</th>
<th>\</th>
<th>189.98</th>
<th>9.58</th>
<th>\</th>
<th>\</th>
<th>\</th>
</tr>
</thead>
<tbody>
<tr>
<td>合计</td>
<td>1983.50</td>
<td>100.00</td>
<td>\</td>
<td>12060.64</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

评价区总生物量 12060.64t。评价区类型以耕地为主，面积为 726.47hm²，占评价区总面积的 36.63%，总生物量为 4881.86t，占评价区总生物量的 40.48%；评价区内灌草丛面积为 243.18hm²，占评价区总面积的 12.26%，总生物量为 1967.30t，占评价区总生物量的 16.31%；阔叶林面积为 117.69hm²，占评价区总面积的 5.93%，总生物量为 4032.16t，占评价区总生物量的 33.43%。

b) 景观生态体系质量现状

在自然体系等级划分中，评价区属于自然景观生态系统，主要由湿地生态系统、森林系统、草地系统以及农田系统、村镇生态系统相间组成。项目所在地耕地、林地等土地类型均有分布，项目所在地区的生态系统，在该地区经过多年发展已经形成了集农、林等人工综合生态系统。

景观生态系统的质量现状由生态评价区域内的自然环境、各种生物以及人类社会之间复杂的相互作用来决定。从景观生态学结构与功能相匹配的理论来说，结构是否合理决定了景观功能的优劣，在组成景观生态系统的各类组分中，模地是景观的背景区域，它在很大程度上决定了景观的性质，对景观的动态起着主导作用。本评价区模地主要采用传统的生态学方法来确定，即计算组成景观的各类拼块的优势度值 (Do)，优势度值大的就是模地。优势度值通过计算评价区内各拼块的重要值的方法判定某拼块在景观中的优势，由以下 3 种参数计算出：密度 (Rd)、频度 (Rf) 和景观比例 (Lp)。样方标准是以 0.5km×0.5km 为一个样方，对景观全覆盖取样，并用 Merrington Maxine“t”-分布点的面分比表”进行检验。

密度 \(Rd = \) 拼块 I 的数目/拼块总数×100%

频度 \(Rf = \) 拼块 I 出现的样方数/总样方数×100%

景观比例 (Lp) = 拼块 I 的面积/样地总面积×100%

通过以上三个参数计算出优势度值 (Do):

优势度值 (Do) = \([(Rd + Rf)/2 + Lp]/2 \times 100% \]
运用上述参数计算本项目生态评价区各类拼块优势度值，其结果见表4.2.6-19。

| 表4.2.6-19 评价区内各类缀块优势度值现状统计表 |
|----------------|----------|----------|----------|----------|
| 景观类型 | Rd（%） | Rf（%） | Lp（%） | Do（%） |
| 林地 | 3.86 | 6.54 | 5.93 | 5.57 |
| 草地 | 19.40 | 21.96 | 12.26 | 14.31 |
| 耕地 | 29.87 | 28.67 | 36.63 | 30.04 |
| 水域 | 28.48 | 36.36 | 35.60 | 34.04 |
| 建设用地及其他用地 | 18.38 | 9.93 | 9.58 | 11.87 |

分析表明，本项目评价区水域的拼块优势度值最大，其次为耕地拼块，林地、建设用地及其他用地的拼块优势度值相对较小。评价区内水域拼块的优势度值较大，主要为人工荷塘、池塘水域，生态系统内成分单一，自我调节能力较弱，抵抗力稳定性较低，如果不经过人为管理，其恢复力稳定性较低，但是经过人为管理后，其恢复力也较强。

4.3 相关生态敏感区规划概况

4.3.1 白洋淀省级自然保护区

4.3.1.1 自然保护区概况

2002年，河北省政府批准《白洋淀湿地自然保护区规划》，白洋淀成为省级湿地自然保护区。保护区共分为四个核心区，即烧车淀核心区、大麦淀核心区、藻柞淀核心区、小白洋淀核心区，核心区总面积97.40平方公里，占保护区总面积的31.2%；核心区的外围湿缓冲区，总面积62.40平方公里；缓冲区外围是试验区，总面积是152.20平方公里。2012年，根据《白洋淀省级自然保护区总体规划》（修编版），对白洋淀湿地保护区功能区进行调整，调整后白洋淀省级自然保护区总面积为296.96平方公里，其中核心区面积94.40平方公里，缓冲区面积53.68平方公里，试验区面积148.88平方公里。

4.3.1.2 保护区类别和主要保护对象

根据《自然保护区类型与级别划分原则》（GB/T14529-93），白洋淀省级自然保护区属于自然生态系统类的内陆湿地和水域生态系统类自然保护区。白洋淀省级自然保护区的保护对象是内陆淡水湿地生态系统，主要保护白洋淀湿地生态
环境、水生和陆栖生物群落，特别是要重点保护珍稀濒危野生动、植物物种。

4.3.1.3 主要生物资源

a) 植物资源

按照中国植物区系区划（吴征镒、王荷尘, 1983），白洋淀省级自然保护区处于泛北极植物区、中国-日本森林植物亚区、华北地区的华北平原、山地亚地区。

白洋淀省级自然保护区具有明显的温带湿地特征，高等植物有 78 科 227 属 349 种，植物区系表现出明显的温带植物区系特点。

白洋淀省级自然保护区植被主要为水生植被，陆生自然植被已遭到破坏，现在仅在路边、村旁、淀泊周围有人工种植可供材用的高大乔木和部分杂草。白洋淀水生植被可划分为 4 个植被亚型，16 个主要植被群丛。

白洋淀省级自然保护区有国家Ⅱ级重点保护野生植物 1 种，即野大豆（Glycine soja），主要生长在淀内的水道两边和淀泊的周边区域。

b) 动物资源

白洋淀省级自然保护区是中国植物区系区划中处于古北界华北区黄淮平原亚区华北平原省。

白洋淀省级自然保护区脊椎动物有 5 纲 34 目 76 科 171 属 279 种；其中哺乳动物 5 目 8 科 14 种，鸟类 16 目 46 科 197 种，爬行类 2 目 4 科 11 种，两栖类 1 目 2 科 3 种。白洋淀省级自然保护区鱼类资源丰富，计有 54 种，隶属于 10 目 16 科 48 属（表 1-4），其中以鲤形目种类为最多，计有 33 属 38 种，占白洋淀总种数的 70.37%。在保护区分布的鱼类中，数量多、产量高或经济价值高的种类主要有鲤鱼、鲫鱼（Carassius auratus）、鳊（Parabramis pekinensis）、黄颡（Monopteras albus）、乌鳢及鳜（Siniperca chuatsi）等。

底栖无脊椎动物有节肢动物、软体动物和环节动物，共计 38 种；浮游动物有原生动物 13 属，轮虫 21 属 26 种，枝角类 7 属，挠足类 8 种。

白洋淀省级自然保护区动物区系具有明显的古北界特征。白洋淀省级自然保护区有国家Ⅰ级保护鸟类 4 种，占鸟类总种数的 2.03%，即丹顶鹤（Grus japonensis）、白鹤（Grus leucogeranus）、大鸨（Otis tarda）和东方白鹳（Ciconia boyciana）；国家Ⅱ级保护鸟类 26 种，占鸟类总种数的 13.20%。
4.3.1.4 拟建项目与自然保护区位置关系
根据工程布置，拟建项目位于白洋淀自然保护区藻茲淀片区，占用保护区面积 540 hm²，涉及保护区核心区、缓冲区、实验区，涉及面积见表 3.9-1。全部为临时占地，退耕还淀工程结束后，将恢复成湿地。

表 3.9-1 拟建工程工程与自然保护区位置关系

<table>
<thead>
<tr>
<th>自然保护区划分</th>
<th>工程施工区</th>
<th>工程涉及自然保护区面积（hm²）</th>
<th>合计（hm²）</th>
</tr>
</thead>
<tbody>
<tr>
<td>核心区</td>
<td>一施工区</td>
<td>93.28</td>
<td>226.7</td>
</tr>
<tr>
<td></td>
<td>二施工区</td>
<td>86.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>三施工区</td>
<td>47.37</td>
<td></td>
</tr>
<tr>
<td>缓冲区</td>
<td>一施工区</td>
<td>158.13</td>
<td>281.01</td>
</tr>
<tr>
<td></td>
<td>二施工区</td>
<td>46.49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>三施工区</td>
<td>76.39</td>
<td></td>
</tr>
<tr>
<td>实验区</td>
<td>一施工区</td>
<td>6.48</td>
<td>32.29</td>
</tr>
<tr>
<td></td>
<td>二施工区</td>
<td>4.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>三施工区</td>
<td>21.31</td>
<td></td>
</tr>
</tbody>
</table>

4.3.1.5 工程占地区域生态环境现状
工程占地区形较为平坦，生境条件较为单一且区域内农耕历史悠久，人为干扰较为严重，区域内基本不存在原生植被。工程占地区土地利用类型以耕地、水域为主，在工程的施工营地及施工一区土地利用类型为耕地，主要为农业植被及常见的农田杂草灌草丛，常见的农作物为小麦、玉米、水稻等；农田杂草常见的有刺儿菜、白茅等；区域内沟渠中亦有芦苇、狐尾藻、菹草零星分布。在工程的施工二区为季节性水陆交替地带沼泽植被较为发育，常见的植物主要有芦苇、扁秆荆三棱藻、香蒲、茵茵藻、红蓼、菰等。工程的施工三区常年为水域在浅水区域水生植被较为发育，常见的水生植物群系主要有菹草群、微齿眼子、菹菜、金鱼藻、浮萍等。工程一施工区常年无水，为主要为耕地，分布野生动物多为傍人生活型，如喜鹊、灰喜鹊、珠颈斑鸠、白鹡鸰、褐家鼠等。二施工区主要为季节性沼泽，主要分布野生动物为白鹭、普通翠鸟、白鹡鸰、喜鹊等鸟类。三施工区常年有水，分布野生动物主要包括两栖类的黑斑侧褶蛙等；鸟类中的普通翠鸟、“
白鹡鸰等傍水型鸣禽，绿翅鸭、斑嘴鸭、小䴙䴘等游禽、黑翅长脚鹬、白骨顶等涉禽。

4.3.2 白洋淀国家级水产种质资源保护区

4.3.2.1 水产种质资源保护区概况

白洋淀国家级水产种质资源保护区总面积 8144 hm²，其中核心区面积 1063 hm²，实验区面积 7081 hm²。特别保护期内 4 月 1 日—10 月 31 日。保护区位于河北省安新县，范围在东经 115°57′09″—116°07′20″，北纬 38°46′25″—38°58′43″之间。核心区分为两个，第一核心区位于烧车淀水域，范围在东经 115°57′47″—116°04′56″，北纬 38°58′02″—38°58′43″之间，面积 600 hm²，主要作为乌鳢、鳜鱼的天然繁殖孵化区和育肥区。第二核心区位于前塘、后塘、泛鱼淀水域，范围在东经 115°57′09″—116°01′16″，北纬 38°48′03″—38°46′25″之间，面积 463 hm²，其中前塘、后塘主要作为日本沼虾、黄颡的天然繁殖孵化区，泛鱼淀主要作为黄颡鱼的天然繁殖孵化区。保护区内除核心区外为实验区，范围在东经 115°57′—116°07′，北纬 38°43′—38°58′之间。主要保护对象是青虾、黄颡鱼、乌鳢、鳜鱼，其他保护物种包括鳖、团头鲂、田螺、中华绒螯蟹等。

4.3.2.2 拟建项目与自然保护区位置关系

根据工程布置及水产种质资源保护区功能区划图，拟建项目涉及水产种质资源保护区非养殖区，占用保护区面积 113.57 hm²，涉及面积见表 3.9-2。全部为临时占地，退耕还淀工程结束后，将恢复成湿地。

<table>
<thead>
<tr>
<th>自然保护区分区</th>
<th>工程施工区</th>
<th>工程涉及水产种质保护区面积（hm²）</th>
<th>合计（hm²）</th>
</tr>
</thead>
<tbody>
<tr>
<td>非养殖区</td>
<td>一施工区，干旱时施工</td>
<td>76.34</td>
<td>113.57</td>
</tr>
<tr>
<td></td>
<td>二施工区抽水干地施工</td>
<td>30.76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>三施工区水中作业</td>
<td>6.47</td>
<td></td>
</tr>
</tbody>
</table>

4.3.3 白洋淀省级风景名胜区

白洋淀今有“北地西湖”，含有“华北明珠”之誉，是河北省省级风景名胜区，是国家AAAAA 级旅游景区，是河北第一大内陆湖，总面积 366km²，南距石家庄 189km，北距北京 162km，东距天津 155m，是京津冀腹地。白洋淀汇集了上游自太行山麓发源的 9 条河流之水，形成一片由 3700 多条沟渠、河道连接的 146
个大小湖泊群，湖群中岛屿和湖畔散布有36个村庄。河淀相连、沟壑纵横，苇田星罗棋布，成为中国特有的一处自然水景区风光。白洋淀历史上曾多次干涸，1988年大雨使白洋淀湖区恢复，成为旅游胜地。2007年成为国家5A级旅游景区。

白洋淀水域辽阔，春季青芦吐翠，夏季红莲出水，秋天芦苇泛金黄色，冬季泊似碧玉。周围芦苇环抱，荷花簇拥。白天，淀风习习，波光粼粼，夜晚渔家灯火、鸳鸯印月，如诗如画。每年八九月最佳，此时荷花盛开，芦苇丛生密集，水道形成苇墙中的迷宫，其景色非常独特宜人。秋季芦苇收获后，淀水一片汪洋，湖中除了沟渠中可以行船。因此成为著名的旅游胜地。

白洋淀人文旅游资源丰富，如近些年来相继建设了旅游专用码头、专线公路、鸳鸯岛、快乐岛、民谷风情园、渡假村、荷花在观园、渔人乐园、明珠游乐园、孙梨纪念馆等现代人文景观，举办了数次荷花节，开辟了淀家乐、放荷灯、鱼鹰捕鱼表演等民俗风情活动项目，丰富了白洋淀风景游、生态游、民俗游与文化游的内涵。白洋淀风景名胜区自然旅游资源与人文旅游资源兼备，单体旅游资源总数较多，但单纯的自然旅游资源相对较少，人文旅游资源类型相对较丰富。
5. 环境影响分析

5.1 土壤环境影响

项目区内现状土地利用类型主要有旱田、稻田、荷塘等。藻腮淀淀区目前处于退化期，稻田、苇田、草林地面积逐年增加，淀泊水面萎缩严重，大部分区域已开垦为荷塘或农田（稻田、旱地等）。其中，农田面积约 22.6km²，约占藻腮淀的 45.2%。农田由于大量施用化肥，当水位上涨淹没农田后，表层土壤中的化肥溶解进入水体，会对淀区水质带来不利影响。

工程区土壤质量现状监测结果表明：土壤 pH＞7.5，呈碱性，工程所在地为常年地下水位平均埋深 2m~4m 的平原区，不属于《环境影响评价技术导则 土壤环境（试行）》表 1 指定的敏感区，即为土壤环境不敏感区。本工程建设虽然部分清除扰动地表土壤，但清除的土壤用于本工程用地范围内生态造型，且根据用地范围土壤与底泥的监测结果分为高、中、低风险区和无风险区，对于高风险与中风险土壤与底泥，将其上覆水抽到水质类别相同的独立水域（IV 及 IV 类以上水质直接排入淀区），通过干式施工方式进行底泥清理；清理的底泥在一施工区进行地形营造，内部消纳底泥方量，控制底泥氮磷释放，兼有水质净化、优化景观格局的生态塑型措施。

5.2 水土流失影响

5.2.1 水土流失现状

根据《水利部办公厅印发<全国水土保持规划国家级水土流失重点预防区和重点治理区复核划分成果>的通知》（水利部水保[2013]188号）、《关于发布<省级水土流失重点预防区和重点治理区>的公告》（冀水保[2018]4号），项目区安新县不属于国家级和河北省水土流失重点预防区和重点治理区。

根据《河北省 2018 年水土流失动态监测成果》，河北省 2018 年水土流失总面积为 42173.90km²，占国土面积的 22.53%，其中强度以轻度为主，轻度水土流失面积 38437.82km²，占全省水土流失总面积的 91.14%；中度水土流失面积 2157.28km²，占全省水土流失总面积的 5.12%；强烈、极强烈和剧烈水土流失面积分别为 721.75km²、587.26km² 和 269.79km²，分别占全省水土流失总面积的 1.71%、1.39%和 0.64%。

全省水土流失总面积中，水力侵蚀面积为 37617.62km²，占全省水土流失总面积的 89.14%；风力侵蚀面积为 4556.28km²，占全省水土流失总面积的 10.86%。
面积的89.20%；风力侵蚀面积为4556.28km²，占全省水土流失总面积的10.80%。

雄安新区水土流失面积0.67km²，占全省水土流失总面积的0.002%。

项目区位于我国水力侵蚀类型区中的北方土石山区，通过对工程区土地利用现状、植被类型现状、地形坡度以及植被覆盖率的调查。结合本工程所在地的地形、气候水文、土壤植被等资料，根据工程占地类型及水土流失预测分区，确定项目区平均土壤侵蚀模数为200t/(km²·a)，水土流失强度以微度水力侵蚀为主。

5.2.2 水土流失预测

a) 扰动地表面积

根据工程总体布置，结合实地调查，对工程建设期开挖扰动、占压地表和损坏的植被面积进行统计，本工程扰动原地表面积为422.56hm²。

b) 损坏水土保持设施数量

根据《关于水土保持补偿费收费标准(试行)的通知》(发改价格[2014]886号)，结合《关于调整<水土保持补偿费收费标准>的通知》(冀价行费[2017]173号)的规定，根据工程总体布置，结合工程实际情况，扣减未扰动水面面积167.0hm²，本工程损坏水土保持设施数量为422.56hm²。

c) 土石方平衡

本工程土方开挖总量78.42万m³，土方填筑总量78.42万m³，土石方挖填平衡，未产生弃渣。

水系开挖总共约17.93万m³，其中清淤约4.09万m³，粘土开挖约13.84万m³，4.40万m³就近摊铺于水系两侧，9.13万m³用于滩涂地形营造的表面覆盖，1.90万m³用于台田营造，剩余2.5万m³用于表土置换。

表土清理共约10.60万m³，与南部高高程区域低污染土进行相互置换。

深泓开挖约11.38万m³，就近摊铺于泓沟两侧。

围埝拆除约6.52万m³，分别用于地形营造和就近摊铺处理。

台田表土整理开挖约13.67万m³，全部就近用于台田地形营造。

底泥清淤约18.32万m³，全部就近用于滩涂地形营造。

d) 可能造成的水土流失量

本工程建设活动对项目区水土流失的影响主要集中在施工期，施工期的水土流失预测面积为422.56hm²，预测时段为1年。扰动后确定本工程施工期土壤侵
蚀模数取值为 2500t/(km²·a)～3000t/(km²·a)。

自然恢复期的水土流失预测面积为 56.3hm²，预测时段为工程完工后 1 年内，各单元施工扰动活动结束后，松散裸露面逐步趋于稳定，植被得以恢复，土壤侵蚀强度减弱并接近原背景值。根据各预测单元水土流失特征及自然条件，分析后综合确定各区防治措施实施后土壤侵蚀模数取值为 500t/(km²·a)～800t/(km²·a)。

预测范围内可能产生的水土流失总量为 14873t，其中新增水土流失量 13173t。工程水土流失防治和水土保持监测的重点时段为施工期，重点区域为主体工程区。

5.3 生态环境影响

5.3.1 评价区土地利用变化

工程建设前后，评价区内土地利用格局发生变化。工程建设前后各类拼块数量以及面积的变化具体见表 5.3.1-1。由表可知，本工程建设后，评价区耕地、草地等面积都将有不同程度的减少，而水域滩涂面积将增加 47.71hm²。

<table>
<thead>
<tr>
<th>拼块类型</th>
<th>工程建设前</th>
<th>工程建设后</th>
<th>变化情况</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>数目（块）</td>
<td>面积（hm²）</td>
<td>数目（块）</td>
</tr>
<tr>
<td>林地</td>
<td>3113</td>
<td>117.69</td>
<td>3113</td>
</tr>
<tr>
<td>草地</td>
<td>15631</td>
<td>243.18</td>
<td>25424</td>
</tr>
<tr>
<td>耕地</td>
<td>24070</td>
<td>726.47</td>
<td>4838</td>
</tr>
<tr>
<td>水域滩涂</td>
<td>22951</td>
<td>706.18</td>
<td>32831</td>
</tr>
<tr>
<td>建设用地及其他用地</td>
<td>14808</td>
<td>189.98</td>
<td>14808</td>
</tr>
<tr>
<td>合计</td>
<td>80573</td>
<td>1983.50</td>
<td>81015</td>
</tr>
</tbody>
</table>

5.3.2 对生态系统的影响

5.3.2.1 对森林生态系统的影响

评价区内的森林生态系统面积较小，主要分布在瀑河、府河等河流两岸，为人工防护林。本工程占地面积为 540hm²，均为临时占地，占用森林生态系统面
积较小，仅场外临时施工区域占用人工种植的加杨。工程对森林生态系统的影响主要为工程占地、施工活动干扰对植被的破坏，从而影响在森林生态系统中活动的动物种类。根据现场调查，本工程占用的林地主要为人工防护林地，多为加杨林等。随着植被的破坏，也会影响森林生态系统中活动的动物，如环颈雉、大多数鸣禽等。工程临时占用森林生态系统，可在工程结束后，进行植被恢复来弥补部分损失的生物量。施工活动主要表现在扬尘等对植物和动物生境的影响，使植物生产能力降低，动物生境劣化。但由于本工程占用森林生态系统面积较小，施工时间较短，且占地区森林生态系统结构简单，人为干扰程度大，施工期间工程对评价区森林生态系统的影响只是暂时的，且影响有限，在加强施工人员的管理及采取相应措施的情况下，这种影响会进一步减小。

5.3.2.2 对草地生态系统的影响

评价区内草地生态系统主要分布于围埝两侧，农田和村落周边。主要植被类型为刺儿菜群系、白茅群系等，在评价区内广泛分布。工程临时占用草地会减少评价区内草地生态系统面积，破坏植被，减少动物活动范围，但本工程为退耕还淀生态修复工程，工程实施结束后可采取湿地生境营造、植被恢复工程，因此本工程临时占地对草地生态系统中植被和植物多样性影响较小，且是暂时的。同时，由于动物具有趋利避害行为，施工区域附近还有较多类似生境，工程不会使评价区草地生态系统中动物的种类组成和区系发生改变。因此，项目建设不会对项目区整个草地生态系统的稳定性和结构完整性产生较大影响。

5.3.2.3 对湿地生态系统的影响

a) 对湿地景观格局的影响

湿地在流域中具有特殊的空间结构特征，并沿着一定的地形梯度和水文梯度表现出特殊的纵向结构、横向结构和景观内部结构特征。水流在景观中连接各斑块，某些时候作为巨大的自然干扰力量出现，对景观变化最具影响力。

藻苇淀退耕还淀工程实施后，水系疏导等建设将使施工区域在水平和垂直空间上形成多层次和多格局，形成沟壕湿地、季节性草本沼泽湿地、草本滩涂湿地、湖泊湿地等不同湿地类型，改变现有单一的的荷塘、耕地景观类型，景观异质性有所增加。

b) 对湿地生物组分的影响
生物组分即生态系统的生产者、消费者和分解者。湿地植物作为湿地生态系统的第一性生产力，为湿地动物提供了重要的栖息场所，同时也影响着湿地生态系统结构。

水系疏导、内源污染净化、健康湿地等工程建设形成了不同类型的湿地，为湿地生物与水生生物的栖息创造了条件。工程实施后改善了湿地的水质，水体富营养化程度降低，浮游藻类生物量将有所下降，因此，能够生存下来的水生生物的株高、密度及分布区域内生物量将有所提高，同时也将改变对水质要求不同的各种湿地植物及湿地动物的分布情况。

c) 对湿地结构的影响

本工程的实施，充分利用束河持续入淀水量，结合区域现有水系结构、湿地地形恢复和营造，采用绿自然的人工方式，拆除围堤围埝，恢复水动力条件；以自然恢复为主，营造沟渠、草本沼泽、滩涂、湖泊等自然湿地生境，恢复陆生草本植物-挺水植物-沉水植物组成的植物群落及食草型-滤食性-肉食性鱼类群落，逐步恢复自然湿地生态系统完整性，有利于湿地生态系统结构完善。

d) 对湿地生态功能的影响

本工程主要采用多类型湿地水质净化、生态滩涂等生态净化技术，净化荷塘和稻田存量水水质，控制荷塘底泥（农田土壤）氮磷污染释放，实现主要水质指标（COD、NH3-N 和 TP）达到地表水 IV 类标准后排入淀区，有助于提高评价区湿地水质净化功能。

本工程实施后将融入白洋淀湿地景观格局，再现白洋淀“荷塘苇海”特色湿地景观风貌，休闲旅游价值增加；提高了评价区内湿地的直接使用功能。

本工程施工区属于白洋淀省级自然保护区范围，是多种野生动物栖息、繁衍、迁徙和越冬的基地。湿地生态的改善有助于生物多样性维持价值增加以及科研教育功能的实施。

5.3.2.4 对农田生态系统的影响

评价区内的农田生态系统面积较大且广泛分布，农业植被主要有水稻、小麦等。工程对农田生态系统的影响主要为工程占地导致农作物损失，从而减少农作物产量。工程永久占用农田生态系统面积为 186hm²，占评价区农田生态系统面积（726.47hm²）的 25.60%，占用比例较大。本工程建设区全部为临时占地，拟采用土地租用方式，将按照相关规定进行补偿。
5.3.2.5 对城镇/村落生态系统的影响

评价区内的城镇/村落生态系统主要为施工区附近村庄，分布较集中。施工期内施工过程中产生的扬尘、废水、废气、废渣会加剧人居环境的恶化：施工现场裸露的地表、堆放的材料等会对人们的视觉产生冲击，影响城镇的景观功能；除此之外，工程建设征地将占用一定面积的植被面积，对自然生态系统及景观产生一定的影响。但这种影响是局部的、暂时的，且施工过程中会采取相应的减缓措施，以及相应的植被恢复措施，因此，对城镇/村落生态系统的影响较小。

另外，工程完工后将有效改善藻荡淀的水环境现状，可有效改善区域的生态环境，同时也起到美化湿地水体景观，改善人居环境的作用，对城镇/村落生态系统的影响表现为正面影响。

5.3.3 对陆生植物的影响

5.3.3.1 施工期对陆生植物和植被的影响

藻荡淀一期退耕还湿工程主要有：水系疏导、内源污染净化、健康湿地工程、智慧湿地工程。工程施工建设对评价区内植物及植被的影响主要有以下几个方面：
①工程占地：工程占地对地表及水生植被的破坏；②施工活动产生的废水、废气、扬尘等对植物生长造成一定的影响。具体影响方式和程度如下：

a) 工程占地对植物的影响

根据工程用地范围图纸量算成果，本工程用地 540hm²，全部为临时占地。其中涉及水田 106hm²，旱地 80hm²，荷塘 304hm²，其他（水塘、围堤）50hm²。

藻荡淀一期退耕还湿工程临时占地主要为布设的临时施工营地以及水系疏通、底泥清理等工程临时堆放泥土的区域，临时占地总面积为 540hm²。本工程临时占地土地利用类型以耕地和水域为主。结合现场调查，临时施工营地占地区域植被以农作物为主，主要种植有小麦、水稻等，零星分布有田间杂草灌草从常见的群系有刺儿菜群系、白茅群系等，常见的植物种类有黄鹌菜、野艾蒿、肾叶打碗花、狗尾草、蒲公英等。工程临时堆泥区植被以沼泽水生植被为主，常见的植物群系有芦苇群系、香蒲群系、红蓼群系、菅草群系、菅菜群系、狐尾藻群系、浮萍群系等常见的植物种类有芦苇、香蒲、菅、苞蒜、槐叶萍、紫萍、菅草、狐尾藻等。

据统计，临时占地所损失的生物量较小，为 1146.74t，占评价区总生物量的 9.51%。随着施工结束，对临时占地进行微地形营造、生态滩涂边坡整理后按
照工程设计进行健康湿地营造。随着健康湿地工程的实施可使临时占地区植物及植被在适宜条件下可迅速得到恢复，因此，工程临时占地对植物及植被的影响较小。

b) 施工活动对植物的影响

施工活动对植物的影响主要是废水、废气、固体废弃物等不利影响。依据施工活动对植物的影响方式，可分为直接影响及间接影响，直接影响主要是指工程开挖、人员活动、车辆碾压等使得周围植物及植被的损失，生物量减少；间接影响主要是指施工过程中产生的废气、废水、废渣、扬尘等对植物产生的影响，使得周围植物生长变缓，发育不良或死亡。

1) 直接影响

施工期，水系疏通、底泥清理、营造微地形、边坡整理等工程开挖会直接破坏区域内植被，同时工程施工时施工人员及机械增多，施工人员踩踏及施工机械碾压也会对区域内植物及其生境造成直接的破坏。

工程开挖建设主要是为临时施工工程，建设完工后将会按照工程涉及进行健康湿地营造被直接破坏的植被将会得到补充及修复。工程施工道路全部选用现已有的围堤，施工人员及机械进场，施工人员踩踏及施工机械碾压，也会对区域内植物及其生境造成直接的破坏。

工程开挖建设时为临时施工工程，施工建设完工后将会按照工程涉及进行健康湿地营造被直接破坏的植被将会得到补充及修复。工程施工道路全部选用现已有的围堤，施工人员及机械进场施工对周边植被的影响较小。由于本工程占地面积不大，且区域多为适应性较强物种，加强宣传教育活动，加强施工监理，施工前划定施工范围，规范施工人员活动等措施得到落实后，人为干扰对植物及植被的影响较小。

2) 间接影响

扬尘、废气主要是施工车辆行驶过程中产生的。扬尘、废气对植物的影响主要是在叶脉间或边缘出现不规则水渍状，导致叶片逐渐坏死，植物光合作用能力减弱，加速植物死亡。

废水是施工人员生活污水及施工所造成的生产废水，主要有含泥废水、含油废水等，这可能对生长在水域附近的植被产生一定的影响，还可能渗入土壤，影响土壤中的元素组成，进而影响其正常的生长发育。

淤泥主要来源于各项工程开挖活动，淤泥随意堆放不仅会破坏堆放处的植被和景观，而且可能导致局部区域的水土流失。

5.3.3.2 运行期对陆生植物和植被的影响

藻苇淀一期退耕还湿工程在运行期对植被的影响主要为有利影响：①健康湿
地工程的实施使临时占用的植被得以恢复，植物种类数量增加，植被覆盖率增加。
②水系疏导、内源污染净化的实施保障了藻莘淀植被的生态用水需求提升了湖淀区域内的水质有利于植被的生长。③工程的总体实施扩大了植被的适宜生境对于评价区的生态环境恢复、生态多样性发展、生态平衡具有积极意义。
　　1) 藻莘淀一期退耕还湿工程中的健康湿地工程主要是针对 4 种湿地类型典型的地形特征进行湿地生境营造从而进行动植物恢复。健康湿地工程的实施使临时占用的植被得以恢复，植物种类数量增加（植被恢复新增加了矮生耐旱苦草、刺苦草），植被覆盖率增加（恢复挺水植物面积约 36.2hm²，浮叶植物面积约 4.06hm²，沉水植物面积约 5.65hm²）。
　　2) 水系疏导主要通过扩挖原有水系和开挖新水系等工程措施，为湿地生态修复及生态系统恢复提供水资源和水动力条件，内源污染净化采取的主要措施为对污染严重的荷塘进行清淤。通过上述两项工程可解决评价区内水动力弱化、湿地面积萎缩、水质污染等影响评价区内植物生长的不利因素，工程的实施保障了藻莘淀植被的生态用水需求，提高了湖淀区域内的水质有利于植被的生长。
　　3) 工程实施后水域湿地面积增加了 304hm²，通过本工程的建设运行之前的耕地变为湿地区域进一步扩大了植物的适宜生境，对于评价区的生态环境恢复、生态多样性发展、生态平衡具有积极意义。

5.3.3.3 对重点保护野生植物的影响
　　在评价区内调查到河北省保护野生植物莕菜 1 处面积约 14.3hm²。
　　此次调查到的河北省重点保护野生植物莕菜不在工程的施工区域距离施工二区东侧的最近距离约 5m 工程施工建设可能会对其造成影响：
　　1) 工程施工时施工区河道开挖、底泥清理时临时堆存时若随意堆放可能会对荊菜造成压覆造成荊菜的死亡资源量减少。
　　2) 同时施工废水若随意排放可能会改变区域内水质、等生境条件，可能会对荊菜的生长发育产生不利影响；扬尘粗颗粒如随风飘落到荊菜植株上或附近，可能会使其生命活动及生境受到一定影响。

5.3.3.4 外来入侵种的影响
　　评价区分布的外来入侵物种共 3 种，分别为反枝苋、刺苋、土荆芥，主要分布在路边、田埂、荒地等地。工程施工扰动地表，使得对环境变化适应能力较差的土著种生长受到影响，而现有的外来入侵植物可能迅速占有这些空余的生态位。
而成功入侵，这可能对土著物种产生一定的排斥，对本地植物类型造成一定影响。

5.3.4 对陆生动物的影响

5.3.4.1 施工期对陆生动物的影响

本工程在施工期对陆生动物的影响主要有以下几个方面：①对动物栖息地的影响；②水质污染；③施工噪声；④施工活动；⑤夜晚强光干扰。影响方式和程度具体如下：

a) 对动物栖息地的影响

工程施工期，水系疏导工程、内源污染治理工程、临时施工场地等均会占用陆生动物栖息地。其中水系疏导工程主要集中在沟壕湿地区、季节性草本沼泽区，现状多为耕地，人为干扰较大，分布野生动物种类较少，多为喜与人类伴居的种类；草本滩涂湿地区、湖泊湿地区水域面积较大，主要分布野生动物多为斑嘴鸭、小䴙䴘等游禽及黑翅长脚鹬、白骨顶、白鹭等涉禽。

根据工程资料，本工程占地 540hm²，全部为临时用地。施工期其中生活的两栖类爬行类及小型兽类将被迫迁移至占地区之外的生境增加其它生境内动物种群密度，加剧种内种间竞争，增加分布其中的两栖类、爬行类以及小型兽类的生存压力。由于弃土、充填用土均为河底、湖底底泥，营养较为丰富，通过一定时间的植被恢复，会形成新的植被群落，从而为两栖类、爬行类以及小型兽类提供了栖息地，可减缓其生存压力。

鸟类具有较强的迁移能力，且生境广泛，工程临时占地将占用部分雀形目鸣禽、鹤形目及鹳形目鹭科涉禽等的生境，另外根据施工进度安排，主体工程施工主要集中在 6 月-10 月，植物移栽主要在 4 月至 6 月，受影响较大的主要为留鸟及夏候鸟。但在工程占地之外的其他大部分区域，存在适宜鸟类活动的生境，因此施工占地对鸟类的影响不大。

b) 水质污染对动物的影响

水质影响区域内水生动植物种类及数量，间接地影响以水生动植物为食的动物分布及多样性。本项目工程一施工区常年干旱，二施工区排水后进行施工，三施工区在水中作业。工程区沟渠较多，临近水域或涉水施工，水系疏导工程、内源污染净化工程等施工扰动使水质变浑浊，其内分布的水生生物种类和数量将有不同程度的降低，这些水生生物大多是鸟类、两栖类以及部分蛇类的食物来源，其种类和种群数量的降低影响这几类动物的分布。此外，两栖类交配、繁殖等行
为在水中进行，水质的变化将会影响其繁殖。但施工区近年来人为干扰严重，耕地、荷塘面积大幅增加，农药与化肥易造成农业面源污染，现状水质较差，多为Ⅳ、Ⅴ类水质，本工程施工时间主要集中在6-10月，施工周期短，且施工结束后将有效改善区域水质，水质污染对动物影响有限。

c) 施工震动、噪声及夜间强光对动物的影响

施工噪声、震动包括土方开挖、车辆运输、弃土等产生的震动，震动、噪声对不同类型的动物，其产生的影响不同。施工期噪声源主要来自于挖掘机、推土机、铲运机、振荡器以及设备运输等噪声。

对于两栖类、爬行类动物来说，施工活动所产生的震动将对其产生一定的驱赶性，特别是对震动相对敏感的蛇类，施工活动产生的震动将驱赶其迁往其所能承受震动范围之内的区域，施工活动影响其分布。在相对较远的地带分布的两栖类和爬行类对噪音相对不敏感，施工噪音对其影响不大。

对于鸟类，施工噪音以及施工活动产生的震动对其均会产生一定的驱赶影响。成鸟具有较强的迁移能力，施工噪音以及震动会将距施工区附近较为敏感的鸟类驱赶其迁出原有栖息地，但随着施工活动的结束，这种影响将会消失，鸟类会逐渐回到原有生境，因此施工噪音及震动对鸟类的影响不大。同时夜晚施工产生的强光会对严重干扰鸟类的正常栖息活动，强光会干扰其正常觅食，也为其生存带来一定风险。

对于兽类，施工噪音以及震动同样会影响其分布，但施工活动区域主要分布的是草兔、啮齿目鼠类以及刺猬等，施工震动及噪音会驱赶其迁往更适合其生存的栖息环境，而啮齿目鼠类则对环境适应能力极强，施工震动及噪音对其影响不大。

d) 人为活动对动物的影响

施工活动中，不可避免的是人为活动，部分具有一定食用价值以及经济价值的蛙类、蛇类以及鸟类如环颈雉、珠颈斑鸠等，有可能因为施工人员的捕杀，而造成其种群中个体数量的下降，影响其种群优势度以及繁殖等，对于这类影响，需要通过对施工人员进行宣传教育、制定严格的施工规范以及相应的处罚条款等加以约束，以保证区域内物种多样性及丰富度。

5.3.4.2 运行期对陆生动物的影响

根据《雄安新区藻苲淀退耕还淀生态湿地恢复工程一期初步设计报告》
（2020.04），本项目总任务为推进藻苇淀退耕还淀生态湿地恢复先行先试，以水动力条件改善、水质改善、生态恢复为重点，通过实施水系疏导、内源污染净化、健康湿地（湿地生境营造、动植物恢复）、智慧湿地，改善水动力条件，控制内源污染负荷，提升湿地水质，丰富湿地生境，恢复白洋淀西部生态屏障，再现白洋淀“荷塘苇海”特色湿地胜景。

水环境的改善，同样对区域内的动物分布有一定的影响。两栖类、傍水型爬行类、水鸟以及部分水边生活的兽类，其种群健康指数和水环境密切相关，水环境的改善对于这些种类的种群繁殖以及物种多样性是有利的，水体自净能力的提升、湿地生态系统的逐步恢复有利于区域生物多样性的增加。而一些食腐性或习惯在恶劣环境下生存的种类如雀形目鸦类、啮齿目鼠类等，随着水环境的改善，其种群密度有可能降低。

a) 健康湿地工程对动物的影响

施工区目前水域主要为荷塘及池塘等湿地，人为干扰程度较大，健康湿地工程主要包含健康湿地生境营造和动植物恢复。湿地生境营造可以改善局部环境，沟壕湿地区、季节性草本沼泽区、草本滩涂湿地区、湖泊湿地区和水泡湿地区在水平和垂直空间上形成多层次和多格局，各自然湿地区通过营造沟壕、芦苇台田、草本沼泽、草本滩涂、芦苇台田、深泓等生境为动物提供栖息地方面发挥作用。另外水生动植物恢复（恢复挺水植物面积约36.2hm²，浮叶植物面积约4.06hm²，沉水植物面积约5.65hm²；投放鱼类约8850kg，底栖动物共计22075kg）也能为湿地鸟类提供食物来源，有利于白鹭、夜鹭、池鹭、绿头鸭、斑嘴鸭、黑水鸡等湿地鸟类的栖息繁衍。

b) 湿地面积增加对湿地动物的影响

根据初步设计，水系疏导、内源污染净化工程实施后营运期均会增加湿地面
积、改善水质，且耕地、荷塘等面积减少，区域人为活动干扰程度降低。区域将营造沟壕湿地区、季节性草本沼泽区、草本滩涂湿地区、湖泊湿地等不同类型湿地，这些新形成的湿地会吸引一些水中生活的鸟类如浮科、鹭科、鸭科等水鸟种群数量增加。

5.3.4.3 对国家重点保护野生动物的影响

评价范围内陆生脊椎动物中有国家Ⅰ级重点保护野生动物1种：为大鸨；有
国家Ⅱ级重点保护野生动物3种：分别为黑鸢、白尾鹞和鹊鹞。

国家Ⅰ级重点保护野生动物大鸨为陆禽，在评价区为旅鸟，且数量非常稀少，仅仅在迁徙季节会短暂停留，且主要活动在远离村庄的麦地里进行食物补给。施工期，产生的噪声、扬尘、废气等会对工程区域周围环境产生干扰，从而影响其栖息，但是大鸨一般远离施工区，影响较小。

评价区内重点保护猛禽主要为黑鸢、白尾鹞、鹊鹞。主要分布于评价区附近的林地，偶尔翱翔至评价区域，分布数量较稀少。本工程对其影响主要为施工期的噪声扰动、人为活动对其活动的干扰，对周边相对较近的鸟类产生一定驱赶。由于大部分施工段临近水域，距其栖息地相对较远，再加上猛禽活动范围广，飞翔能力强，受工程影响程度有限。但要采取严格的管理措施。

5.3.5 对水生生物的影响

本工程为藻荡淀退耕还淀生态湿地恢复工程一期，面积5.4km²，工程主要包括水系疏导、内源污染治理、健康湿地工程和智慧湿地工程等四大类建设内容。

水系疏导即对现有围堤围埝进行拆除，对现有水系进行梳理，保留现有主沟堤作为一级沟堤，将其他现有水系进行疏通、整理，作为二级和三级沟堤，水系的梳理保证工程区域内的生态补水和水体连通性，自然水系优化形成沟堤湿地景观。

内源污染净化工程即依据区域存量水水质类别、底泥和土壤氮磷释放风险分析针对性地进行存量污水治理、底泥清理和表土生态治理，最大限度控制内源营养物对区域内水体的污染。

健康湿地工程依据现状地形地貌、功能分区、生态恢复目标等进行针对性地形营造，在地形营造的基础上配合本土植物的恢复、动物的投放等营建健康湿地生态系统，引导区域生态过程形成，形成藻荡淀特色生态景观形态。

智慧湿地工程是藻荡淀退耕还淀长效保持的重要保障措施，便于后期统一管理，统一运维。

5.3.5.1 施工期对水生生物的影响

从藻荡淀工程一期设计的总体区域来看，区域边界处的围埝多处被打断或者设置有过埝涵管，使得工程区域与外界相连通，对被打断的围埝和涵管进行封闭后，大部分区域是可以通过选择适当的施工时段（6月初～10月底），实现自然干
地施工条件，且封闭后可避免因部分区域水中作业对工程区域以外水体造成污染。

本工程对水生生物的影响主要为：①沟埭疏通、深泓开挖和底泥疏浚造成的悬浮物浓度增加等水质污染，进而影响到生活在其中的水生生物；②施工机械和车辆冲洗的排放的含油废水等对藻苲淀水生生物的影响；③沟埭疏通、深泓开挖、底泥疏浚和滩涂地形营造造成生活在其中的水生生物的直接损失；④沟埭疏通、深泓开挖、底泥疏浚和滩涂地形营造等施工过程中的施工机械产生的噪声，对藻苲淀水生生物的影响。

a) 对鱼类资源的影响评价

本工程对鱼类资源的影响为施工活动中产生的悬浮物、噪声、废水、施工机械的直接伤害等对鱼类产生的不利影响。

1) 工程产生的悬浮物对鱼类的影响

本工程中沟埭疏通、深泓开挖和底泥疏浚等施工过程将造成藻苲淀水体局部悬浮物浓度增加，进而影响到生活在藻苲淀的鱼类。

（1）第一施工区：沟埭疏通

沟埭疏通采取扩挖原有水系和开挖新水系等工程措施。本工程沟埭疏通主要在第一施工区内进行，该区域2020年4月现场调查现状为旱田和水稻田，在藻苲淀南部。根据初设阶段调查，一施工区现状在每年的6月初～10月底基本处于干地状态，工程选择在此时间进行施工沟埭疏通，为干地施工，且施工区周围有围堤和围埝，工程施工不会影响到藻苲淀北部水域的水质，对工程区的鱼类无影响。

施工设备主要考虑采用反铲挖机+推土机+自卸汽车配合，其主要影响是机械开挖过程中，机械噪声对藻苲淀北部水域的鱼类可能产生一定影响，但成年鱼类会主动回避，影响有限。

由于沟埭疏通在6-10月，即第一施工区处于干地状态施工，因此，沟埭疏通施工不会对藻苲淀的鱼类带来较大的影响，其主要影响为施工机械噪声对附近鱼类的回避影响。

（2）第二施工区：底泥疏浚

内源污染净化采取的主要措施为对污染严重的荷塘进行清淤，本工程内源污染净化施工在第二施工区内进行，主要涉及部分藻苲淀北部荷塘和水面。该区域2020年4月现场调查显示，靠近府河一侧的区域为水稻田，为淹没状态：靠近北
何庄侧的区域为全淹没状态，水生维管束植物丰富，有大量沉水植物金鱼藻、穗状狐尾藻、苦草及挺水植物莲、芦苇等，水深约5m，水体透明度较高。现场调查显示该水域鱼类较为丰富，有鲫、小黄黝鱼、子陵吻虾虎鱼、麦穗鱼、圆尾斗鱼等，数量较多，是鱼类适宜的产卵场和索饵场。

底泥清淤采用环保清淤，即采用清淤疏浚设备清挖受到污染的黑臭底泥，清除内源污染，以减少底泥污染物向水体中的释放。清挖出的黑臭底泥在经过无毒化、无害化处置后，用于滩涂地形营造。施工设备主要利用潜水泵进行抽水，采用反铲挖机进行清淤，挖机与人工配合进行滩涂地形营造。针对氮磷污染释放高风险荷塘，荷塘内需进行清淤处置的底泥规模约25.9万m³，清淤水域面积约749194m²。

底泥疏浚施工期间会产生大量悬浮物，悬浮物随着水体流场的变化扩散，造成饵料生物的减少，进而影响周边水域鱼类的摄食来源。通常认为，成年鱼类的活动能力较强，在悬浮泥沙浓度超过10mg/L的范围内成鱼可以回避，施工作业对其的影响更多表现为“驱散效应”。但工程区各水域由于围堤围埝被分割成一个个单独的水域，在此区域内的鱼类无法回避，底泥疏浚将对该区域内的鱼类产生较大影响。

此外，底泥疏浚后的底泥将就近进行滩涂地形营造，滩涂地形营造要求在干地条件进行，需把被打断的围埝进行封闭，然后对区内积水进行抽排，以创造干地施工条件，将对该小区域内的鱼类造成较大破坏。建议减少抽排水区域，对滩涂地形营造施工过程中收集到的鱼类进行转移等措施以减少对鱼类资源的损失。

底泥清淤和滩涂营造作业时间为第一年7月20日至第一年10月30日，避开了鱼类繁殖期，对鱼类繁殖影响较小。
（3）第三施工区：荷塘抽稀和深泓开挖

水系疏导工程中采取湖泊湿地荷花抽稀及深泓开挖措施，以疏通湖泊湿地区主水流通道，防止荷花连片生长，同时营造大面积深水水域。荷塘抽稀和深泓开挖施工主要涉及湖泊湿地所在的第三施工区，为藻苇淀北部荷塘和水面，该水域常年有水，根据2020年4月现场调查显示，该区域为全淹没状态，同第二施工区东侧水域类似，该区域水生维管束植物丰富，有大量沉水植物金鱼藻、穗状狐尾藻、苦草及挺水植物莲、芦苇等，水深约5m，水体透明度较高。现场调查显示该水域鱼类较为丰富，有鲫、小黄鳜鱼、子陵吻虾虎鱼、麦穗鱼、圆尾斗鱼等，数量较多，是鱼类适宜的产卵场和索饵场。

荷塘抽稀和深泓开挖采用水中作业，深泓开挖约16.47万m³，就近摊铺于泓沟两侧，考虑采用水陆两栖挖机进行。挖机施工将产生大量悬浮物，由于工程区各水域因围堤围堰被分割成一个个单独的水域，在此区域内的鱼类无法回避，荷塘抽稀和深泓开挖将对该区域内的鱼类产生较大影响。
施工时间为第一年7月5日至第一年10月30日，避开了鱼类主要繁殖期3-6月，对鱼类繁殖影响较小。

2) 含油废水对鱼类的影响

本工程底泥清淤、深泓开挖等过程中的挖机，沟壕疏通中的反铲挖机、推土机和自卸汽车等，在施工中冲洗的排放的含油废水若直接排入水体，会影响藻苄淀水质，从而对该水域内的鱼类产生不利影响。因此施工机械冲洗，维修产生的含油废水要处理达标后排放。

3) 施工机械噪声对鱼类的影响

本工程底泥清淤、深泓开挖等过程中的挖机，沟壕疏通中的反铲挖机、推土机和自卸汽车等，在施工过程中产生的噪声对藻苄淀的鱼类产生一定影响。噪声对鱼类的影响主要是造成鱼类回避，施工期噪声会使鱼类产生背离性行为，避开噪声源，但在被迫持续噪音刺激下，某些种类的个体会出现行为紊乱，从而妨碍其正常索饵和洄游。第三施工区水域常年淹没，各围堤内小水域连为一整片水域，鱼类可在各水域内进行迁移，以回避机械噪声的影响。

4) 施工机械对鱼类的直接伤害

深泓开挖、底泥疏浚和滩涂地形营造过程中，挖机等施工机械在挖掘过程中，若生活在其中的鱼类无法及时避让，则会造成直接机械损伤。其中底泥疏浚和滩涂营造主要是第二施工区，该区域部分水域的鱼类将受到直接损失，深泓开挖主要在第三施工区，将造成藻苄淀北部荷塘和水域中鱼类的直接损失。

b) 对浮游生物的影响评价

工程施工期间对浮游生物的影响主要为沟壕疏通、深泓开挖和底泥疏浚等施工过程将造成藻苄淀水体局部悬浮物浓度增加，对浮游生物造成一定不利影响。挖泥船绞吸清淤过程中，会不可避免带起部分沟道底部的泥沙，造成水中瞬时SS污染程度高，而沟壕疏通和深泓开挖这些水下工程在施工中会对水体产生一定扰动，悬浮物随着水体流场的变化扩散，会形成一定范围的悬浮物高浓度分布区，施工区附近约200m范围内悬浮物浓度将显著升高，导致局部水体透明度下降，浮游植物光合作用暂时降低，进而影响浮游植物的生长。浮游植物的减少将使得
以此为饵料的浮游动物生物量的减少。

第一施工区主要为旱田和水稻田，每年6-10月为干地，沟壕疏通在此期间进行施工，对藻荡南部旱田和水稻田的浮游生物影响较小。第二施工区部分靠近府河一侧的区域为水稻田，为淹没状态，靠近北何庄侧的区域为全淹没状态，虽然底泥清疏和滩涂营造作业时间为第一年7月20日至第一年10月30日，在枯水期施工，但施工期间仍有部分区域为涉水施工，面积约41.84 hm²，工程施工将对该区域的浮游生物产生一定不利影响。第三施工区位于藻荡北部荷塘和水面，常年有水淹没，面积为145.72hm²，深泓开挖施工将对该区域的浮游生物产生一定不利影响。

但施工活动结束后，受影响区域的浮游生物会逐渐恢复到现状水平。

c) 对底栖动物的影响评价

工程施工期间对底栖动物的影响主要为沟壕疏通、深泓开挖、底泥疏浚和滩涂地形营造造成生活在其中的底栖动物的直接损失。其次是施工活动造成的悬浮物浓度增加及施工含油废水等，影响底栖动物的呼吸、摄食等生命活动。

首先沟壕疏通、深泓开挖、底泥疏浚等施工过程中，挖机等机械开挖，挖泥船绞吸清淤，均会造成生活在其中的底栖动物的直接损失。第一施工区主要为旱田和水稻田，每年6-10月为干地，沟壕疏通在此期间进行施工，对藻荡南部旱田和水稻田的底栖动物影响较小。第二施工区部分靠近府河一侧的区域为水稻田，为淹没状态，靠近北何庄侧的区域为全淹没状态，虽然底泥清疏和滩涂营造作业时间为第一年7月20日至第一年10月30日，在枯水期施工，但施工期间仍有部分区域为涉水施工，面积约41.84 hm²，底泥清疏施工将对该区域的底栖动物的直接损失。第三施工区位于藻荡北部荷塘和水面，常年有水淹没，面积为145.72hm²，深泓开挖施工将对该区域的底栖动物的直接损失。

其次是沟壕疏通、深泓开挖和底泥疏浚等施工过程将造成藻荡水体局部悬浮物浓度增加，将对底栖动物的呼吸、摄食等生命活动造成不利影响。其中挖泥船绞吸清淤过程中，会不可避免带走部分沟道底部的泥沙，造成水中瞬时SS污染程度高，而沟壕疏通和深泓开挖这些水下工程在施工中会对水体产生一定扰动，悬浮物随着水体流场的变化扩散，会形成一定范围的悬浮物高浓度分布区，施工
区附近约 200m 范围内悬浮物浓度将显著升高，从而影响底栖动物的呼吸、摄食等生命活动。

但施工活动结束后，受影响区域的底栖动物会逐渐恢复到现状水平。

d) 对水生维管束植物的影响评价

施工期，拟建项目对水生维管束植物的影响主要有两个方面，一是沟壕疏通和深泓开挖工程会造成施工范围内水生维管束植物的直接损失，二是施工产生的大量泥沙和悬浮物会对藻革藻水体的水生维管束植物的生长产生影响。

第一施工区主要为旱田和水稻田，现场调查显示藻革藻南部旱田和水稻田中水生植物较少，主要为假稻、稗等挺水植物。藻革藻南部沟渠以金鱼藻、穗状狐尾藻、喜旱莲子草等为主。水生植物分布较少，加上第一施工区每年 6-10 月该区域为干地，沟壕疏通在此期间进行施工，因此工程施工对藻革藻南部旱田和水稻田的水生维管束植物影响较小。

第二施工区部分靠近府河一侧的区域为水稻田，为淹没状态，靠近北何庄一侧的区域为全淹没状态，2020 年 4 月现场调查显示，在藻革藻北部荷塘和水面水生植物较丰富，以莲、苦草、金鱼藻、穗状狐尾藻、芦苇、香蒲为主，生物量较大。虽然底泥清淤和滩涂营造作业时间为第一年 7 月 20 日至第一年 10 月 30 日，在枯水期施工，但施工期间仍有部分区域为涉水施工，面积约 41.84 hm²，底泥清淤施工将对该区域的水生维管束植物造成直接损失。

第三施工区位于藻革藻北部荷塘和水面，常年有水淹没，2020 年 4 月现场调查显示，藻革藻北部荷塘和水面水生植物较丰富，以莲、苦草、金鱼藻、穗状狐尾藻、芦苇、香蒲为主，生物量较大。该水域面积为 145.72hm²，深泓开挖施工将对藻革藻南部的水生维管束植物的直接损失，尤其是沉水植物苦草、金鱼藻、穗状狐尾藻等的影响较大。

此外，底泥疏浚和深泓开挖等施工产生的大量泥沙和悬浮物会对藻革藻北部水面的水生维管束植物的生长产生影响。

5.3.5.2 运营期对水生生物的影响

本工程为藻革藻退耕还淀生态湿地恢复工程，面积 5.4km²，工程主要包括水系疏导、内源污染治理、健康湿地工程和智慧湿地工程等四大类建设内容。根据藻革藻总体功能分区，工程区域分为 4 个功能分区，分别为沟壕湿地区、季节
性草本沼泽区、草本滩涂湿地区和湖泊湿地区。工程实施后水体流通性将增强，淹没水域面积大幅增加，水质得到净化，经植被修复，人工增殖放流、鱼类生境营造后，鱼类等水生生物资源将得到恢复。

a) 水体流通性增强，淹没水域面积大幅增加

现状情况下，由于围堤围埝的阻拦作用，水体流通性较差。工程建设后，由于清淤、围堤拆除，水体流通性增大，淹没面积大幅增大，沟壕湿地及滩涂湿地以北的水深分布均匀，水位变化时，淹没面积稳定，能创造稳定的水域环境。实施工程一期措施后，流速改善效果从南到北呈递减趋势，水深分布规律化，工程范围内水体滞留时间减少，整体水体交换能力增强，淹没水域面积大幅增加。

b) 水质得到净化

现状情况下，由于围堤阻拦作用，现状水质浓度分布不均，而水质较差水体将最终由府河流入下游白洋淀，对下游白洋淀水体造成污染。采取围堤拆除措施后，较差水体将进入藻苲淀内部，导致工程一期范围内内部水体变差。利用湿地进行水质净化后，工程区内部污染物浓度得到不同程度削减，根据工程初设报告预测结果，工程一期范围内 COD 浓度平均较小 10mg/L，NH₃-N 浓度平均减小 0.12mg/L，TP 浓度平均减小 0.08mg/L；随着初始水位增加，由于湿地净化作用，各水质因子浓度减小速率变大。在设计工况下，通过湿地净化作用，自府河河口湿地进入藻苲淀的水体 COD、NH₃-N、TP 等污染物均能得到削减。

c) 生态恢复

本工程实施后可以改善藻苲淀内的水系连通性、水质、河床底质及生境丰富度，为水生生物提供有利的生存环境，对水生生物具有有利影响。

通过水系疏导工程的实施，项目区内原有水体封闭区域通过水系生态廊道与外界连通，充分满足了南侧较高台田的生态补水；还淀工程实施后，区域内水体形成斑块廊道连通的整体水生态空间，连通性增加；基于各功能分区健康生态系统构建设计，生境多样性丰富度与原有单一化生境相比，得到显著的提升，生境的多样化将有利于鱼类等水生生物的生存，经多年的自然演替，物种多样性、生物量都将显著提升，食物网层级逐步完善。

综上所述，本工程施工期会对施工区域浮游生物、底栖生物和鱼类造成较大影响，引起悬浮物增加并破坏原有生境，而工程实施后则对水生生物具有有利影
响，可以改善水质、水系连通性，并形成新的更适宜的生境。

5.3.6 评价区生态完整性变化

5.3.6.1 工程影响区生物量的变化

评价区内各植被类型损失的生物量见表 5.3.6-1。工程施工将破坏区域原有植被，主要为耕地及荷塘水域，修复为水域滩涂。耕地、灌丛与灌草丛面积减少，水域滩涂湿地面积增加。植被生物量将发生变化，生物量总损失为 1146.74t，占评价区总生物量（12060.64t）的 9.51%，损失较小。各植被类型损失的生物量以农业植被所占比例最大，损失生物量 1249.92t，占总损失生物量的 10.36%；其次为草地，损失生物量 404.50t，占总损失生物量的 3.35%。随工程施工的结束，工程区将进行动植物恢复，在一定程度上能减少植被生物量的损失。

<table>
<thead>
<tr>
<th>植被类型</th>
<th>面积变化 (hm²)</th>
<th>平均生物量 (t/hm²)</th>
<th>生物量变化值 (t)</th>
<th>占总生物量比例 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>阔叶林</td>
<td>0</td>
<td>34.26</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>草地</td>
<td>-50</td>
<td>8.09</td>
<td>-404.5</td>
<td>-3.35</td>
</tr>
<tr>
<td>农业植被</td>
<td>-186</td>
<td>6.72</td>
<td>-1249.92</td>
<td>-10.36</td>
</tr>
<tr>
<td>水域</td>
<td>304</td>
<td>1.67</td>
<td>507.68</td>
<td>4.21</td>
</tr>
<tr>
<td>合计</td>
<td>68</td>
<td>—</td>
<td>-1146.74</td>
<td>-9.51</td>
</tr>
</tbody>
</table>

5.3.6.2 景观生态体系质量综合评价

a) 恢复稳定性分析

自然系统的恢复稳定性，是根据植被净生产力的多少度量的。如果植被净生产力高，则其恢复稳定性强，反之则弱。工程建成后，各种土地类型发生变化，耕地、草地等拼块类型的面积减少，水域滩涂面积增加，各种植被类型的面积和比例与现状基本相当，模地依然是水域滩涂，生态系统依然保持稳定。工程建设造成评价范围内生态系统生物量减少，工程建成后耕地、草地等减少将使评价范围的生物量减少 1146.74t，仅减少 9.51%，减小幅度未超过评价区生态系统的的生态承载力。因此，工程引起的干扰是可以承受的，生态系统的稳定性的改变很小。

工程建设所造成的区域土地利用格局的变化，将对区域自然体系的空间结构造成一定影响，但工程实施后，耕地等人为干扰程度较大斑块将恢复为自然湿地，在工程运行一段时间后，工程影响区自然体系的性质和功能将得到恢复。
b) 阻抗稳定性分析

自然系统的阻抗稳定性是由系统中生物组分异质性的高低决定的。异质性是指一个区域内(景观或生态系统)对一个种或更高级的生物组织的存在起决定作用的资源(或某种性质)在空间或时间上的变异程度(或强度)。由于异质性的组分具有不同的生态位，给动物物种和植物物种的栖息、移动以及抵御内外干扰提供了复杂和微妙的相应利用关系。另一方面，异质化程度高的自然系统，当某一斑块形成干扰源时，相邻的异质性组分就成为了干扰的阻断，从而达到增强生态体系抗御内外干扰的作用，有利于体系生态稳定性的提高。

评价区内主要为水域滩涂和耕地，工程建成和运行后，评价区内土地利用格局发生变化，草地、耕地等面积相应减少，水域滩涂面积增加。对区域自然体系生态完整性的影响由工程施工及其活动引起。在工程实施后，评价区内的耕地、灌木面积减少，营造和恢复成不同湿地类型，导致区域自然生态体系生产能力稳定状况发生变化，对本区域生态完整性具有一定影响，但工程均为临时占地，且后期恢复为湿地，或人工为干扰较大的耕地恢复为不同类型湿地，人为干扰减少，不同湿地异质性增加，有利于生态稳定性提高。

c) 景观生态体系质量综合评价

工程实施后评价区内各土地类型优势度值计算结果见表 5.3.6-2。

<table>
<thead>
<tr>
<th>拼块类型</th>
<th>Rd (%)</th>
<th>Rf (%)</th>
<th>Lp (%)</th>
<th>Do (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>实施前</td>
<td>实施后</td>
<td>实施前</td>
<td>实施后</td>
</tr>
<tr>
<td>林地</td>
<td>3.86</td>
<td>3.97</td>
<td>6.54</td>
<td>6.51</td>
</tr>
<tr>
<td>草地</td>
<td>19.40</td>
<td>13.93</td>
<td>13.34</td>
<td>10.82</td>
</tr>
<tr>
<td>耕地</td>
<td>29.87</td>
<td>21.32</td>
<td>17.02</td>
<td>27.95</td>
</tr>
<tr>
<td>水域</td>
<td>28.48</td>
<td>41.89</td>
<td>36.36</td>
<td>51.47</td>
</tr>
</tbody>
</table>

从表中可以看出，工程建设完成后评价区土地利用格局将发生一定变化，由于评价区内耕地等将营造成不同湿地，水域滩涂优势度值由工程建设前的 34.01%上升到 48.80%，草地、耕地拼块的优势度值相应减少，但减少的幅度较小。作为模地的水域滩涂优势度值仍高于其它拼块的优势度值，仍然作为评价区内的模
由此可见，拟建工程对评价区自然体系的景观格局影响不大。综上所述，工程施工造成的区域土地利用格局的变化，将对评价范围生态体系产生一定的影响，但工程实施后，耕地等人为干扰程度较大斑块将恢复为自然湿地，在工程运行一段时间后，工程影响区自然体系的性质和功能将得到恢复。另外，在工程建设过程中应注意生态系统的保护，使受到影响的生态系统的自然生产力尽快得到恢复。

5.4 地表水环境影响

施工期对地表水环境的影响主要为含泥废水、含油废水、施工生活污水、和底泥清淤对水质的影响。营运期，总体对水环境的影响为正面有利影响。

5.4.1 施工期对地表水环境影响

a) 含泥废水

施工生产废水来自淤泥堆放、主体工程施工产生的泥浆水等，主要污染物为悬浮物，悬浮物最大浓度为20000mg/L，泥浆水经过沉淀池处理后，上清液回用于施工或就近排入工区周边水沟。但工程区位于白洋淀省级自然保护区内，应注意不能排入核心区与缓冲区。堆泥区浑浊水体主要来源于底泥和间隙水中多数溶解态污染物的释放，主要污染物为COD、SS及营养物等，也应再次沉淀处理。

b) 含油废水影响分析

施工机械主要以柴油和汽油动力燃料，机械车辆冲洗排放废水悬浮物和石油类含量较高，施工车辆和机械冲洗废水中含有一定量的石油类，若含油废水直接排入水体，在水面上形成油膜，会造成水中溶解氧不易恢复，影响水质：含油废水随意排放，会降低土壤肥力，改变土壤结构，不利于施工区基底恢复。因此施工机械冲洗，维修产生的含油废水要处理达标后排放。

c) 施工作业污水影响分析

本工程施工人员入驻施工营地，高峰期共需施工人员约300人，根据同类工程经验，按照每人每天产生80L污水计，产生污水量约24m³/d。施工生活污水含有多种污染物，主要污染因子为CODcr、BOD5、NH3-N、TP，其浓度最大值分别为：400mg/L、200mg/L、25mg/L、8mg/L，直接排放会进一步加重淀泊有机污染。

d) 底泥清淤对水质影响分析
水陆两栖挖掘机清淤过程中，会不可避免带起部分沟道底部的泥沙，除了会产生一定量的 SS 外，亦会使底泥中吸附的污染物部分释放出来，对水环境造成一定影响。

1）悬浮物对地表水环境的影响

水陆两栖挖掘机施工时会搅动湖泊底泥，激起的泥水会引起清淤地点水体悬浮物浓度增大。类比同类型工程试验结果（戴明新.挖泥机疏浚作业对环境影响的试验研究交通环保 1997，18(4):7-9）和相关湖泊治理工程对地表水环境影响的分析结论，在清淤点附近水体中的 SS 含量最高，悬浮疏浚物的扩散机理类似于连续点源扩散，但悬浮疏浚物随流扩散到一定距离（100 〜 200m 左右），水中悬浮物含量基本接近本底浓度。

在《平面二维悬沙输移扩散模式在航道整治工程环境影响评价中的应用》（王大魁，黑龙江环境通报，2004，28(3):54-57）文献中提出，施工过程泥沙悬浮量为 3kg/m³ 〜 5kg/m³。结合本工程的清淤规模和范围，采用干塘方式清淤。清淤工程不同疏浚点产生的悬浮物的总量可用下式进行估算：

\[W = \frac{Q_0 \cdot C_0 \cdot 1000}{3600} \] (5.4-1)

式中：\(W \) 为疏浚点悬浮物的产生总量 (g/s);
\(C_0 \) 为疏浚过程泥沙悬浮量 (kg/m³)，本评价取值 3kg/m³；
\(Q_0 \) 为施工强度，挖泥效率为 350m³/h 左右。

由上式计算得疏浚过程悬浮物产生率为 291.67g/s。

综上所述，清淤开挖施工主要集中在开挖点附近水体，并以类似于连续点源方式扩散，影响范围为 100〜200m，对地表水环境影响有限。

2）有机物释放对地表水环境的影响

（1）有机物的释放

本工程施工段污染特征为底泥中有机物含量高，在围埂水下开挖过程中，底泥中的耗氧有机污染物会随悬浮物部分释放进入水体中。在扰动条件下，底泥释放污染物的机理比较复杂，目前尚无成熟的估算方法，本评价类比同类型报告对底泥有机物和重金属的释放进行相关分析。底泥扰动时释放污染物主要通过以下几种形式综合作用的结果：i).底泥隙间水中多数溶解态污染物（如氨氮、磷酸盐、重金属等）的浓度一般远比上覆水体高，在分子扩散、生物扰动和水动力作
用下，污染物会向上覆水释放，释放量与间隙水中污染物持续补充能力有关；ii).在水动力作用下，污染物随表层底泥的再悬浮直接进入水体，与水动力作用的强度有关；iii).表层底泥中的有机质降解或矿物发生化反应，形成溶解态污染物进入水体。疏浚方式对底泥释放污染物的影响较大，从类似疏浚工程悬浮物扩散范围实验研究结果看（黎荣等. 城市河道环保疏浚的试验研究. 水利水电技术, 2004, 35(5):），疏浚引起 COD、NH3-N 等可溶性物质的扩散范围要大于悬浮物（100~200m），为主要污染物。清淤过程中单点底泥受扰动的时间较短，释放进入周围水体中的污染物以间隙水中的污染物为主。假设间隙水中的污染物全部释放进入疏浚点附近水体。类比中山大学在《佛山市佛山水道环境疏浚及底泥处置工程环境影响报告书》编制过程中对污染河道底泥底泥间隙水中的污染物的调查结果，污染较重的采样点，间隙水中污染物含量也高。所有点的间隙水均呈弱碱性，pH 为 7.33~8.27，COD 32.4~618mg/L，氨氮 9.3~80.2mg/L，污染物浓度较高。

（2）对地表水环境的影响

清淤时工程扰动底泥使得底泥中有机物随悬浮物部分释放进入水体中，其影响范围和影响时间比悬浮物的大，对地表水环境有一定的影响，主要影响时段为围梗水下土方开挖施工期。拟建工程为生态修复工程，在工程结束后，会通过相关污染临时控制工程、水生态修复工程增强水体自净能力，总而言之，该工程对地表水环境的影响是短暂、有限和可接受的。

3）重金属释放对地表水环境的影响

参考底泥重金属形态及迁移转化研究成果分析，水体中重金属污染物经絮凝沉降作用，随泥沙一起沉积在河床中，底泥重金属形态一般以硫化物结合态为主，含量最高，约 75%，腐植质结合态和硝酸盐结合态的含量约为 8~10%，盐酸盐物质结合态约 10%，水溶性物质为可给态，含量约 5%。可给态要转化为毒性最大的离子态需要一定的条件，这些条件就是水体的 pH 值、温度、Eh、重金属的原始浓度等。

根据污染源调查，工程区无排酸性废水的重大污染源，围堤围埝拆除作业也无酸性废水产生。施工过程水体中 pH 值正常，水温无变化，悬浮于水体中的重金属形态不会发生改变。底泥污染物监测结果表明，底泥重金属各指标的浓度
值较低。因此，工程施工过程中扰动底泥释放的重金属较少，产生的溶解态重金属对清淤段的水质影响不大。

5.4.2 营运期对地表水环境影响

5.4.2.1 对水文情势的影响

藻苲淀现状主要入淀河流（萍河、瀑河、漕河、府河）来水水量少、入淀河流水质污染严重，项目区内围堤围埝纵横交错，导致淀内水动力不足，生境退化，淀区围垦造田及区域生态景观破碎化严重，进而导致白洋淀区物种多样性急剧降低等生态环境问题。

藻苲淀现状水系多为灌排水沟渠，围堤围埝阻隔导致沟渠水系多为封闭式局部循环，藻苲淀水体整体连通性较差，导致水动力不足。藻苲淀内主要水道2条，分别从瀑河入淀口区域（常年有水）和萍河入淀区域（常年干涸）进入藻苲淀内部，途经北何庄北侧淀区，最终汇入白洋淀。

一期工程区现状水系多为灌排水沟渠，围堤围埝阻隔导致沟渠水系多为封闭式局部循环，水体连通性较差。现有一级水道（顶宽10m以上）15条，总长度29697m；二级（顶宽5~10m）及二级以下水道95条，总长度29993m。工程设计方案结合场区地形条件，利用或改善现状水渠，重组现状圩堤结构及沟渠，基于2020年预计水位、补水量，针对府河河口湿地出水未进入一期工程范围进入工程区两种情况，进行了一期工程区域内淹没区域、水深、水流分布等水动力条件分析，提出了水系疏导设计方案：府河河口湿地出水未进入藻苲淀情况下，淹没水位逐渐升高，可淹没区域面积越大，流动水域面积逐渐增大，但由于圩堤阻拦作用流动水域面积集中落在一期北侧区域。项目区南部现状高程线高于6.8m的区域保留陆地区域现状原地形，只针对水道进行清理。

本工程区水位淹没范围设计水位：远期常年水位为6.8m~7.0m；项目区南部、滩涂、围堤及芦苇台田均高于7.0m；近期常水位7.2m；项目区南部、滩涂和围堤未被淹没，高程均高于7.2m。

本工程基于藻苲淀5条主水流的规划布局，对2号、3号和4号水流布局水细化，提出2-1#、2-2#、2-3#、3#、4#共5条水流规划，以改善一期工程范围水动力条件和满足区域湿地生态需水需求。水系整体为南北走向，对现状内部水系进行疏通、整理，形成三级水道。其中4条一级水道（顶宽10~20m）、5条二级
水道（顶宽 5~10m），若干三级水道（顶宽 1~5m），将府河入淀口湿地水质净化工程出水引入藻荀淀淀区。同时垂直流向的围堤围埝拆除至常水位以下 50cm；平行于流向的围堤围埝“余段成洲，随行就势”；围堤围埝拆除实行“堤塘协同设计，先塘后堤有序开展”。藻荀淀一期围堤围埝拆除总台长度 30933m，围堤围埝总土方量 53974.4 m³。

上述水系疏通工程按项目区的地形、水位及其周边的水力关系设计，设计工况根据水流规划、水系设计营造了局部微地形，构造多片区湿地形式。主体工程设计对水动力改善效果进行了模拟分析。模拟分为现状工程模拟和设计工况模拟，其中现状工况考虑了两种情形：①上游府河湿地出水未进入藻荀淀情形；②上游府河湿地建成后出水由原漕河河道进入藻荀淀的情形。

设计工况则考虑上游府河湿地建成后出水由原漕河河道进入藻荀淀的情形。现状工况利用现有地形建模对水流流态进行模拟研究，设计工况则依据平面布置图营造微地形并对其水流流态进行模拟研究。模拟结果如下：

（1）水深变化分析

由计算结果可知府河湿地和瀑河入流情况下，一期现状中部流速与水深分布规律基本相同，围堤阻拦下水深无变化，水体流速为零；当处于瀑河补水期时，在下游流体顶托作用下一期北侧区域不透水围堤内水体有小部分扰动，水深极小幅度增加，稳定后，扰动流速逐渐减小并趋于 0m/s；不同初始水位条件下，水深分布规律基本相同，除部分低洼地区水深较大外，一期内部水深分布呈南浅北深趋势；当西南侧府河湿地出水进入藻荀淀时，仅进水口处围堤内水域水深增加，呈围湖特征，在围堤内部环流，水流进入时，流体断面增大流速减缓并趋于稳定；由于围堤围埝的阻拦作用，现状工况一期内部水体流通性较差。

b）流速改善分析

设计工况下，相比现状工况，不同水位工况代表点位流速均略有增大；在拆除部分围堤后，一期范围内水体流通性明显增强，水域面积增大，水深分布中部、北部均匀，不同湿地区流速均有不同程度增大，水位 6.5m 情况下，湖泊湿地平均流速由 0.00012m/s 增大至 0.003m/s，草本滩涂湿地流速由 0.00008m/s 增大至 0.0009m/s，季节性草本沼泽湿地流速增大不明显，但由主河道地区流速增幅较大；水位 6.8m 情况下，湖泊湿地平均流速由 0.00059m/s 增大至 0.0063m/s，草
本滩涂湿地流速由 0.00016m/s 增大至 0.001m/s，季节性草本沼泽湿地流速增大不明显，但由主河道地区流速增幅较大；水位 7.0m 情况下，湖泊湿地平均流速由 0.00052m/s 增大至 0.0051m/s，草本滩涂湿地流速由 0.0002m/s 增大至 0.003m/s，季节性草本沼泽湿地流速增大不明显，但由主河道地区流速增幅较大；水位 7.2m 情况下，湖泊湿地平均流速由 0.00059m/s 增大至 0.01m/s，草本滩涂湿地流速由 0.00032m/s 增大至 0.0013m/s，季节性草本沼泽湿地流速增大不明显，但由主河道地区流速增幅较大。

当水位为 6.5m 时，现状工况水深主要处于 0.0~0.2m 之间，其面积为 0.94km²，设计工况水深主要处于 0.2~0.4m 之间，其面积为 1.25km²；当水位为 6.8m 时，现状工况水深主要处于 0.0~0.2m 之间，其面积为 1.67km²，设计工况水深主要处于 0.8~0.9m 之间，其面积为 1.54km²；当水位为 7.0m 时，现状工况水深主要≥1.5m，其面积为 1.10km²，设计工况水深主要处于 1.0~1.2m 之间，其面积为 2.04km²；当水位为 7.2m 时，现状工况水深主要≥1.5m，其面积为 2.62km²，设计工况水深主要≥1.5m，其面积为 3.49km²。

综上看出，工程的实施，可改善工程区的水流条件及其与周围水系的连通性，可改善水的流速。

5.4.2.2 对水质的影响

项目营运期，总体对水环境的影响为正面有利影响，主要表现为：

本项目通过种植沉水植物、挺水植物以及构建入湖河口湿地和表流湿地工程，作为水生生态系统的基础形成水生态系统的“骨架”。水生植物是水生态系统的重要组成部分，在水生态系统中的修复过程主要是通过枝叶和根系形成天然的过滤层，对水中污染物质的吸附、分解或转化，促进水域养分平衡；同时通过水生植物释放的氧气，增加水环境中的溶氧量，抑制有害菌的生长，减轻或消除水污染，从而显著改善水体的理化性质，降低水体富营养化水平。种植的水生植被与湖泊水体构成一个有机整体，有助于减轻湖泊水体富营养化程度，可通过稀释、吸附、过滤、扩散、氧化还原等一系列物理化学反应起到改善水环境的作用，增强水生生态系统的自净能力，特别是一些搭配的水生植物，不仅可以吸收利用水体中的氮、磷等，而且还为各种水生微生物提供栖息地，提高生物多样性，提高水体透明度，这些微生物为分解、净化水体起到极其重要的作用。同时建立表流湿
地，增加水体中溶解氧，有效吸收水体中的 \(\text{N} \)、\(\text{P} \) 等有机物，降低水体中氨、
磷的含量，增加入淀水体环境容量，增强水体稀释自净能力，有利于淀泊整体水
环境质量的保护，有利于生境的异质性，并能兼顾景观美化。

通过上述水生态修复措施对充分利用自然净化与水生植物系统中各类水生
生物间功能上相辅相成的协同作用来净化水质，从而对藻苲淀入整个白洋淀水质
起到有力的改善作用。

另外，运营期内生态修复种植的水生植物枯萎、死亡，如打捞不及时，会
造成水体二次污染。

为定量分析工程实施对水环境的影响，本预测采用以下二维模型进行预测。

5.4.2.1 预测模型简介

水环境数值仿真模拟是在环境水力学、流体力学等理论基础上发展而来的，模
拟水体水动力变化分布规律。水动力模型及水质数值模型可有效提高水环境管理
工作的效率，成为水环境规划、管理与保护工作中的重要研究手段。

藻苲淀工程一期水深较浅，水体流动二维特征明显，因此适合建立深度平均
立面二维模型。前行业内常用的，可建立深度平均立面二维模型的仿真分析软件
有 SMS（地表水数值模拟软件）、MIKE 21 模块，其中 MIKE 软件 21 模块
建模效率较高，数据可视化程度好，被广泛引用于河渠、行蓄洪区、河口、近海
等地区的水流、泥沙、水质平面二维数值模拟。因此本工程也采用 MIKE 软件的
21 模块对藻苲淀内的流场、浓度场进行模拟分析。

鉴于试点水域的边界不规则性、地形复杂性以及水平尺度远大于垂直尺度等
问题，确定采用基于非结构网格构建的二维水动力模型，研究淀泊水动力特性规
律，分析不同影响因素下淀泊水动力变化过程，为水环境管理与水质研究提供参
考依据。

① 水动力学方程

\[
\frac{\partial h}{\partial t} + \frac{\partial h u}{\partial x} + \frac{\partial h v}{\partial y} = h S \quad (5.4-2)
\]

\[
\frac{\partial h u}{\partial t} + \frac{\partial h u^2}{\partial x} + \frac{\partial h u v}{\partial y} = f v h - g h \frac{\partial \eta}{\partial x} - \frac{h}{\rho_0} \frac{\partial p}{\partial x} - \frac{gh}{\rho_0} \int_0^{\frac{d z}{\partial x}} \frac{\partial p}{\partial z} dz + \frac{f_0}{\rho_0} \frac{\partial u}{\partial x} - \frac{f_0}{\rho_0} \frac{\partial v}{\partial y} - \frac{1}{\rho_0} \left(\frac{\partial s_{x}^2}{\partial x} + \frac{\partial s_{y}^2}{\partial y} \right) + \frac{\partial}{\partial x}(h T_w) + \frac{\partial}{\partial y}(h T_w) + h u S \quad (5.4-3)
\]
\[\frac{\partial \tilde{u}}{\partial t} + \frac{\partial \tilde{u}v}{\partial x} + \frac{\partial \tilde{u}^2}{\partial y} = -f \tilde{u}h - gh \frac{\partial \eta}{\partial y} - h \frac{\partial p_s}{\partial y} - gh \int \frac{\partial p_d}{\partial y} dz + \frac{1}{\rho_0} \left(\frac{\partial \tilde{u} x}{\partial x} + \frac{\partial \tilde{u} y}{\partial y} \right) + \frac{\partial}{\partial y} \left(h T_v \right) + \frac{\partial}{\partial y} \left(h T_p \right) + h v_S S \]

(5.4-4)

上述各式中，\(\eta \) 为水面高程，\(h \) 为总水深，\(g \) 为重力加速度，\(\rho \) 为水的密度，\(\rho_0 \) 为（淡水）水的参考密度。\(f = 2\Omega \sin \phi \) 为科氏力系数（\(\Omega \) 旋转角速率，\(\phi \) 地理纬度），\(\rho_a \) 为大气压强，\(s_s \) 为辐射应力张量。\(S \) 和 \((u_s, v_s) \) 分别为点源的排放量和速度。\(\bar{u} \) 和 \(\bar{v} \) 为流速在深度上的平均值，定义为：

\[\bar{h}u = \int_0^h u \, dz \quad , \quad \bar{h}v = \int_0^h v \, dz \]

(5.4-5)

\((\tau_{ux}, \tau_{uy}) \) 和 \((\tau_{bx}, \tau_{by}) \) 为水面风应力张量和河床面应力张量。河床面应力 \(\tau_b = (\tau_{bx}, \tau_{by}) \) 可用阻力平方定律（摩擦阻力与流速平方成正比）确定：

\[\frac{\tau_b}{\rho_0} = c_f u_b |u_b| \]

(5.4-6)

\(c_f \) 为阻力系数或河床摩擦力，\(u_b = (u_b, v_b) \) 为河床面上的水深平均流速，河床面的摩阻流速为 \(U_{sh} = \sqrt{c_f |u_b|} \)。河床摩擦力可用谢才系数 C（Chezy number）或曼宁系数 M（Manning number）来估算：

\[\begin{align*}
 c_f &= \frac{g}{C^2} \\
 c_f &= \frac{g}{\left(Mh^{1/6} \right)^2}
\end{align*} \]

(5.4-7)

谢才系数的单位是 \(m^{1/2} / s \)，曼宁系数的单位是 \(m^{1/3} / s \)。曼宁系数和河床粗糙高度（糙率）\(k_s \) 关系如下：

\[M = \frac{25.4}{k_s^{1/6}} \]

(5.4-8)

曼宁系数值一般介于 20-40 \(m^{1/3} / s \)。

\((\tau_{ux}, \tau_{uy}) \) 为水面风应力张量，风应力 \(\tau_s = (\tau_{ux}, \tau_{uy}) \) 可通过下面的经验公式来获得

\[\tau_s = \rho_a c_d |u_w| \]

(5.4-9)

式中 \(\rho_a \) 为空气密度，\(c_d \) 为空气阻力系数，\(u_w = (u_w, v_w) \) 水面以上 10 m 的风速。风应力产生的摩擦速率可表示为

\[U_{sh} = \sqrt{\frac{\rho_a c_d |u_w|^2}{\rho_0}} \]

(5.4-10)
T_y 为侧向应力，包括粘性摩擦、湍流摩擦和差异对流，它们可基于水深平均流速梯度用涡粘性系数公式来估计:

$$
T_{xx} = 2A \frac{\partial \tilde{u}}{\partial x}, \quad T_{xy} = A \left(\frac{\partial \tilde{u}}{\partial y} + \frac{\partial \tilde{v}}{\partial x} \right), \quad T_{yy} = 2A \frac{\partial \tilde{v}}{\partial y}
$$

式中，A 为水平涡粘性系数。

根据 Kolmogrov 和 Prandtle 理论，紊动涡粘性系数 v_t 正比于紊流动能 k 的开方及特征涡粘尺度 l。如果取耗散尺度为 l（耗散率 $\varepsilon = \kappa^{3/2}$)，则可以得到以 κ 和 ε 表示的涡粘性系数表达式:

$$
v_t = c_\mu \frac{\kappa^2}{\varepsilon}
$$

式中 c_μ 为经验常数。

对数率涡粘系数可通过下式来计算

$$
v_t = U_z h \left(c_1 \frac{z+d}{h} + c_2 \left(\frac{z+d}{h} \right)^2 \right)
$$

式中 $U_z = \max(U_n, U_m)$, c_1 和 c_2 为常数，当 $c_1=0.41$ 和 $c_2=-0.41$ 时，表达式为一标准抛物线。

Smagorinsky 在 1996 年提出了亚网格尺度上有效涡粘系数与特征长度相关的公式:

$$
A = c_i^2 I^2 \sqrt{2S_y S_{ij}}
$$

c_i 称为“Smagorinsky 常数”，I 代表特征长度，而变形率定义为:

$$
S_{ij} = \frac{1}{2} \left(\frac{\partial \tilde{u}_i}{\partial x_j} + \frac{\partial \tilde{u}_j}{\partial x_i} \right), \quad i, j = 1, 2
$$

②物质运输方程

根据质量守恒定律，考虑污染物运移过程中的对流、扩散和降解等因素，污染物的运移方程可写为

$$
\frac{\partial hc}{\partial t} + \frac{\partial \tilde{u}hc}{\partial x} + \frac{\partial \tilde{v}hc}{\partial y} = \frac{\partial}{\partial x} \left(hD_x \frac{\partial c}{\partial x} \right) + \frac{\partial}{\partial y} \left(hD_y \frac{\partial c}{\partial y} \right) - K_d hc + S
$$

式中 c 为污染物的浓度；D_x, D_y 为 x 和 y 方向的扩散系数。K_d 为污染物线性降
解系数，即污染物的降解符合一级反应式:

\[\frac{dc}{dt} = k_{eq}c \] \hspace{1cm} (5.4-17)

（3）模型求解方法

对于模型求解方法，MIKE21 水动力模型采用有限体积法对水动力和物质输运方程进行空间离散。在水动力方程和污染物传输（扩散）方程的时间积分使用的是显式差分法，为了维持模型的稳定，模拟时间间隔的选定必须使 Courant-Friedrich Levy（CFL）值小于 1。理论上如果 CFL<1，模型便可稳定性运行。然而 CFL 的计算只是一个推测性的。因此模型依然会违反 CFL 准则而发生不稳定的现象。为了解决这个问题，一般将 CFL 临界值从 1 降为 0.8。

对于笛卡尔坐标下的浅水方程式，CFL 定义为

\[
CFL_{nd} = \left(\sqrt{gh} + |u| \right) \frac{\Delta t}{\Delta x} + \left(\sqrt{gh} + |v| \right) \frac{\Delta t}{\Delta y}
\] \hspace{1cm} (5.4-18)

其中 \(\Delta x \) 和 \(\Delta y \) 是 x 和 y 方向的特征长度，\(\Delta t \) 是时间间隔。\(\Delta x \) 和 \(\Delta y \) 近似于三角形网格的最小边长，水深和流速值则是发生在三角形的中心。

污染物运移方程式在笛卡尔坐标上的 CFL 值则定义为

\[
CFL_{ad} = |v| \frac{\Delta t}{\Delta x} + |u| \frac{\Delta t}{\Delta y}
\] \hspace{1cm} (5.4-19)

（4）干湿边界

一般来说，数值模拟区域中常有部分单元网格是处在干湿交替区，为了避免模型计算出现不稳定性，必须设定一个干水深度、半干半湿或淹没深度、湿水深度。当某一单元的水深小于湿水深度时，在此单元上的水流计算会被相应调整，而当水深小于干深度的时候，会被冻结而不参与计算。淹没深度是用来检测网格单元是不是已经被淹没，当水深小于浸没水深的单元会做相应调整，即不计算动量方程，但计算连续方程。通常设定湿水深度为 0.1 m，淹没深度为 0.05 m，干水深度为 0.005 m。当湿水深度很小的时候可能会产生不合理的高流速而造成非稳定流态。

（5）初始条件

初始条件（水文、水质、水温等）的设定，应符合所选数值计算模型的基本
要求，合理确定模型起算条件，控制预测结果不受初始条件的干扰与影响。

一般地，对于二维湖（库）数值模拟，初始条件的变量包括流速、水位与水质浓度等。在没有实测流速资料条件下，初始流速可取零；水位的初始状态根据历史水文记录资料或实测确定；水质的初始状态根据历史水质监测资料确定。当这些初始条件对计算结果的影响在短时间内无法有效消除时，应延长模拟计算的初始时间，必要时应开展初始条件敏感性分析。

5.4.2.2 运行期水环境影响预测

a) 模型边界条件

本次模拟预测，考虑府河河口湿地已建成的情形，即入流为瀑河补水和府河湿地出水入淀流量。由2020年入补水计划及对应历史白洋淀水位选取6.5m, 6.8m, 7.0m, 7.2m四种典型水位及对应上游入流情形，府河瀑河漕河天然来水量较少，根据相关资料描述，现状基本无天然来水，本次计算暂不做考虑。根据藻苲淀多年降雨蒸发量计算可知，降雨蒸发净值为-2.82mm/d。模拟采用恒定流形式，模拟时长为3-5天。具体边界条件如下表所示。

表 5.4-1 模型水位流量边界表

<table>
<thead>
<tr>
<th>下游水位（m）</th>
<th>进水口1上游入流（万m³/d）</th>
<th>澗河进水口</th>
<th>瀚河河道进水口</th>
<th>初始设置水位（m）</th>
<th>降雨蒸发净值（mm/d）</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.50</td>
<td>12.10</td>
<td>6.70</td>
<td>3.70</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6.80</td>
<td>12.10</td>
<td>6.70</td>
<td>3.70</td>
<td>17.0</td>
<td>28.3</td>
</tr>
<tr>
<td>7.00</td>
<td>12.10</td>
<td>6.70</td>
<td>3.70</td>
<td>17.0</td>
<td>28.3</td>
</tr>
</tbody>
</table>

根据一期工程区内源污染释放风险削减分析可知，在25℃无限稀释溶液中测得扩散系数（D₀）分别为：NH₄⁺-N 为 19.8×10⁻⁶cm²/s; PO₄³⁻-P 为 7.0×10⁻⁶cm²/s。工程实施后底泥中 COD 释放总量为 10887.28mg/d; NH₃-N 释放总量为 4641.94mg/d; TP 释放总量为 201.25mg/d。根据一期工程范围内底泥现状检测结果可知工程区荷塘底泥污染物含量均低于《土壤环境质量农用地土壤污染风险管控标准（试行）》(GB 15618-2018)污染风险筛选值，因此不纳入本次预测分析。

表 5.4-2 一期工程运行期进水口及藻苲淀近一期工程水质边界条件表
<table>
<thead>
<tr>
<th>各边界</th>
<th>对应进出位置</th>
<th>COD</th>
<th>NH-N</th>
<th>TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>瀑河补水时的来水水质</td>
<td>进水口 4、5</td>
<td>12.27</td>
<td>0.26</td>
<td>0.09</td>
</tr>
<tr>
<td>府河河口湿地出水水质</td>
<td>进水口 1、2、3</td>
<td>27.38</td>
<td>1.28</td>
<td>0.24</td>
</tr>
<tr>
<td>一期下游藻苇淀顶托水体的水质</td>
<td>一期出水区域</td>
<td>25</td>
<td>0.15</td>
<td>0.1</td>
</tr>
</tbody>
</table>

表 5.4-3 一期工程清淤区与不清淤区底泥释放对比表

<table>
<thead>
<tr>
<th>工程措施</th>
<th>面积㎡</th>
<th>COD（mg/㎡·d）</th>
<th>NH3-N（mg/㎡·d）</th>
<th>TP（mg/㎡·d）</th>
</tr>
</thead>
<tbody>
<tr>
<td>清淤</td>
<td>874084</td>
<td>18.56</td>
<td>2</td>
<td>0.15</td>
</tr>
<tr>
<td>不清淤</td>
<td>2113131</td>
<td>33</td>
<td>14.07</td>
<td>0.61</td>
</tr>
</tbody>
</table>

一期工程位于藻苇淀西部，根据藻苇淀总体功能分区，工程区域分为4个功能分区，分别为沟壕湿地区、季节性草本沼泽区、草本滩涂湿地区和湖泊湿地区。依据水流规划、水系设计营造了局部微地形，构造多片区湿地形式，模型塑造地形插值图如下所示。
b) 模型计算结果分析

不同水位条件下COD计算结果图如下图5.4-2~图5.4-4所示，根据计算结果可知，采取围堤拆除措施后，6.5m水位情况下，上游仅有府河河口湿地较差水体由漕家沟进入藻苂淀一期内部，沟壕湿地区与现状该区域水体COD平均浓度基本一致，且与上游来水COD浓度基本相同为26mg/L，而季节性草本滩涂湿地、湖泊湿地等，利用湿地植被进行水质净化，污染物因子COD平均浓度较现状减小7.9mg/L。6.8m和7.0m水位情况下，上游既有府河河口湿地出水进入一期淀区也有瀑河补水期补水进入一期淀区，因此工程运行期，一期范围内沟壕湿地、湖泊湿地污染物COD浓度主要受上游水质影响，但在湿地植被净化作用下，除沟壕湿地外，其他区域COD浓度均有所下降，当水位为6.8m时沟壕湿地COD平均浓度达26mg/L，其他湿地区COD平均浓度较现状减小6.9mg/L；当水位为7.0m时沟壕湿地COD平均浓度增加26mg/L，其他湿地区COD平均浓度较现状减小7.3mg/L。
图 5.4-3 一期工程运行期 6.8m 水位条件下 COD 浓度分布图
图 5.4-4 一期工程运行期 7.0m 水位条件下 COD 浓度分布图

不同水位条件下 TP 计算结果图如下图 5.4-8~图 5.4-10 所示，根据计算结果可知，一期工程措施后，6.5m 水位情况下，上游仅有府河河口湿地较差水体由漕家沟进入藻荡淀一期内部，沟壕湿地区与现状该区域水体 NH₃-N 平均浓度基本一致，且与上游来水 NH₃-N 浓度基本相同为 1.5mg/L，而季节性草本滩涂湿地、湖泊湿地等，利用湿地植被进行水质净化，污染物因子 NH₃-N 平均浓度较现状减小 0.75mg/L。6.8m 和 7.0m 水位情况下，上游既有府河河口湿地出水进入一期淀区也有瀑河补水期补水进入一期淀区，因此工程运行期，一期范围内沟壕湿地、湖泊湿地污染物 NH₃-N 浓度主要受上游水质影响，但在湿地植被净化作用下，除沟壕湿地外，其他区域 NH₃-N 浓度均有所下降，当水位为 6.8m 时沟壕湿地 NH₃-N 平均浓度增加 0.77mg/L，其他湿地区 NH₃-N 平均浓度较现状减小 0.8mg/L；当水位为 7.0m 时沟壕湿地 NH₃-N 平均浓度增加 0.77mg/L，其他湿地区 NH₃-N 平均浓度较现状减小 0.84mg/L。
图 5.4-5 一期工程运行期 6.5m 水位条件下 NH₃-N 浓度分布图
图 5.4-6 一期工程运行期 6.8m 水位条件下 NH₃-N 浓度分布图
图 5.4-7 一期工程运行期 7.0m 水位条件下 NH₃-N 浓度分布图

不同水位条件下 TP 计算结果图如下图 5.4-8~图 5.4-10 所示，根据计算结果可知，一期工程措施后，6.5m 水位情况下，上游仅有府河河口湿地较差水体由漕家沟进入藻苇淀一期内部，沟壕湿地区与现状该区域水体 TP 平均浓度基本一致，且与上游来水 TP 浓度基本相同为 0.24mg/L。而季节性草本滩涂湿地、湖泊湿地等，利用湿地植被进行水质净化，污染物因子 TP 平均浓度较现状减小 0.05mg/L。6.8m 和 7.0m 水位情况下，上游既有府河河口湿地出水进入一期淀区也有瀑河补水期补水进入一期淀区，因此工程运行期，一期范围内沟壕湿地、湖泊湿地污染物 TP 浓度主要受上游水质影响，但在湿地植被净化作用下，除沟壕湿地外，其他区域 TP 浓度均有所下降，当水位为 6.8m 时沟壕湿地 TP 平均浓度增加 0.11mg/L，其他湿地区 TP 平均浓度较现状减小 0.05mg/L；当水位为 7.0m 时沟壕湿地 TP 平均浓度增加 0.11mg/L，其他湿地区 TP 平均浓度较现状减小 0.04mg/L。
图 5.4-8 一期工程运行期 6.5m 水位条件下 TP 浓度分布图
图 5.4-9 一期工程运行期 6.8m 水位条件下 TP 浓度分布图
5.4.2.3 运行期水环境影响分析

由以上计算结果分析可知，无论上游来水从瀑河还是从漕家沟进入藻苲淀一期内部时，一期工程范围内沟壕湿地与现状条件下同区域水质各污染物指标因子（COD、NH3-N、TP）浓度基本相同，其变化主要受上游河口湿地出水水质影响。而其他湿地区水质主要受内源释放、湿地植被净化和藻苲淀内部顶托水质综合影响，一期工程存量污水采用磁分离一体化处理设备处理治理，底泥清理后运输至南部土坑堆填并用土工膜分隔包装，减少该部分底泥污染物释放。实施工程措施后，内源污染物释放量明显降低，加之植被净化作用，各污染物浓度较现状均有不同程度减小，除沟壕湿地外，其他各湿地片区COD平均浓度减少7.4mg/L，NH3-N平均浓度减少0.79mg/L，TP平均浓度减少0.05mg/L。因此一期工程措施在一定程度上减少了底泥污染物的释放，加上湖泊湿地、草本滩涂湿地净化作用，一期内水质将有一定程度改善。

综上所述一期运行期水质，主要受上游府河河口湿地出水、瀑河补水期补水
和藻苇淀内部顶托水体水质等外在因素影响，而内源释放量较现状明显减小，加上植被净化作用，一期工程运行将一定程度上改善地表水环境质量。

5.5 地下水环境影响

安新县地下水资源较丰富，一般地下水埋深 2～4m，由于近年干旱，水位有所下降。本工程所在区域地下水受大气降水及淀水补给，施工过程中，若淀水受到污染且不采取任何防护措施，污染物可能会通过淀水补给地下水而污染地下水环境。本工程施工分三个施工区，第一施工区与第二施工区基本在自然状况下的枯水期内排水排干的干地进行，第三施工区在水下施工。第二施工区的底泥疏浚为表层以下约 30cm，第一施工区与第三施工区的沟壕疏通、荷塘抽稀、围堤围埝拆除施工均在表层以下 30cm 以内，均不会涉及地下含水层。本工程在水下施工过程中，对水体主要的影响是增加湖水中的 SS，而底泥中的物质主要以结合态存在的重金属难以转化为离子态进入水体中，故施工过程对水体的影响主要为 SS 浓度急剧增加，不存在其他污染物的产生，不会对地下水环境水质造成影响。同时，由于本工程治理施工采取的是挖掘机水下开挖方式，施工过程中对区域内水位不会有影响，故不会影响地下水的水位。

工程施工结束后，水质将变好，故项目运营期不会对淀内地下水环境造成不利影响。

5.6 大气环境影响

施工期大气污染物主要为施工扬尘、燃油机械废气和运输车辆汽车尾气、淤泥恶臭和施工营地食堂油烟等，对周围的环境空气质量有一定影响，营运期对大气没有影响。

5.6.1 施工扬尘的环境影响分析

由工程分析可知：施工过程对大气环境质量的不利影响主要源自运输车辆运输时产生的扬尘，土方开挖、台田地形和滩涂地形营造在受风力作用下产生的 TSP 污染。

项目运输车辆可能将施工场地内较多的泥土带到附近的公路上，天气转晴后，泥土被过往的机动车辆反复扬起，将产生扬尘污染，影响较大。因此在运输车辆出口设置冲洗装置，确保施工场地内的泥土不会污染邻近的交通道路。施工现场运输过程中，若车速过快，则扬尘产生量增大，同时如路面不经常清理维护，也
会容易产生扬尘，其污染情况更为严重。因此，对施工运输车辆进行限速管理，
加强道路日常维护，安排专人清洁洒水，以降低施工道路扬尘带来的环境影响。

施工扬尘的产生量与作业强度及气候条件有密切关系，在静风情况下污染源
产生量会比起风时小，主要对现场的施工人员产生不利影响，其造成的污染影响
是局部和短期的，施工结束后就会消失。施工扬尘扩散到附近空气中，会增加空
气中 TSP 的含量。据对类似施工现场及周边的 TSP 监测，在施工现场处于良好
管理水平的情况下，如施工现场内经常保持湿润，空气中 TSP 的监测结果见表
5.6.1-1。

表 5.6.1-1 施工近场空气中 TSP 浓度变化表

<table>
<thead>
<tr>
<th>序号</th>
<th>距离 (m)</th>
<th>浓度范围 (mg/m³)</th>
<th>浓度均值 (mg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>场界</td>
<td>1.259～2.308</td>
<td>1.784</td>
</tr>
<tr>
<td>2</td>
<td>场界下风向 10m</td>
<td>0.458～0.592</td>
<td>0.525</td>
</tr>
<tr>
<td>3</td>
<td>场界下风向 30m</td>
<td>0.544～0.670</td>
<td>0.607</td>
</tr>
</tbody>
</table>

距施工现场不同距离处空气中 TSP 浓度值见图 5.6.1-1。
表 5.6.1-2 施工场地 TSP 浓度值变化对比表

<table>
<thead>
<tr>
<th>监测点位置</th>
<th>场地不洒水</th>
<th>场地洒水后</th>
</tr>
</thead>
<tbody>
<tr>
<td>距场地不同距离处 TSP 的浓度值 (mg/m³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10m</td>
<td>1.75</td>
<td>0.437</td>
</tr>
<tr>
<td>20m</td>
<td>1.30</td>
<td>0.350</td>
</tr>
<tr>
<td>30m</td>
<td>0.78</td>
<td>0.310</td>
</tr>
<tr>
<td>40m</td>
<td>0.365</td>
<td>0.265</td>
</tr>
<tr>
<td>50m</td>
<td>0.345</td>
<td>0.250</td>
</tr>
<tr>
<td>100m</td>
<td>0.330</td>
<td>0.238</td>
</tr>
</tbody>
</table>

由类比监测知，施工场界能达到《大气污染物综合排放标准》(GB16297-1996) 中无组织排放浓度限值 1.0mg/m³，场地源下风向 40m 处 TSP 为 0.26~0.39mg/m³；在场地源下风向 100m 处 TSP 为 0.17~0.3mg/m³。在不采取洒水措施的情况下，扬尘影响较大，一般影响范围为 40m，最大影响范围为 100m。

按照工程总体布局情况，场地边界距大气敏感点最近距离为 245m，受施工扬尘影响较小。

5.6.2 运输车辆和施工机械燃油废气

机械燃油废气产生量与耗油量及机械设备状况有关。本工程范围内机械数量不多，用到的施工机械(主要包括挖掘机、推土机等)运输车辆，大都以柴油为燃料，会产生一定量的燃油废气，主要污染物包括 CO、NOx、THC 等。其影响范围在施工场地及运输道路沿途，污染范围小、影响较分散、影响时间短。本项目区地势相对较为开阔、空气流通性较好，有利于污染物质的扩散，因此，项目施工机械及运输车辆燃油废气对周围环境的影响较小。总体而言，燃油废气对区域环境空气质量影响不大。

5.6.3 清淤底泥恶臭影响分析

本项目荷塘清淤采用水陆两栖挖掘机进行清淤。恶臭主要产生于对污染严重的荷塘进行清淤和底泥在干化的过程中，荷塘中含有有机物腐质的污泥底泥，在受到扰动和堆置于地面时，其中含有的恶臭物质(主要为甲硫醇、氨、硫化氢等)将呈无组织状态释放，从而对周围大气环境产生不利影响。

本次评价采用类比法分析确定本项目的恶臭污染强度级别。参照国内类似工程的恶臭资料进行分析。淤泥疏挖过程中在岸边将会有较明显的臭味(3~4 级)，30m 之外达到 2 级强度，有轻微臭味，低于恶臭强度的限制标准(2.5~3.5 级)；
50m 之外，基本无气味。

经现场勘查发现，周边居民区离清淤工程区较远，最近位置有 800m。因此，清淤过程恶臭对周边居民敏感点基本没有影响。

5.6.4 施工营地食堂油烟

施工营地食堂可供 300 人就餐，燃用液化石油气。按每人每餐消耗食用油 10g，每天 3 餐，炊事时间为 6h 计算，施工营地食堂使用油消耗量为 9kg/d，一般油烟挥发量占总耗油量的 2-4%，平均为 2.81%，则油烟产生量为 42.2g/h，浓度为 7.03mg/m³（风量为 6000m³/h）。

根据《饮食业油烟排放标准》（GB18483-2001）中的有关规定，建设单位需安装处理效率不小于 85%的高效油烟净化器对食堂排出的油烟进行净化，净化后的油烟排气筒出口朝向应避免易受影响的建筑物。经处理后的油烟浓度约为 1.1mg/m³，可满足《饮食业油烟排放标准》（GB18483-2001）中的油烟最高允许排放浓度 2.0mg/m³，在油烟净化器处理效率不小于 85%的要求，食堂油烟对周围环境空气影响较小。

5.7 声环境影响

5.7.1 噪声来源分析

本工程噪声源主要是施工期各类施工机械和运输车辆，项目运营后无环境噪声源，对周边敏感点的影响较小。

5.7.2 噪声预测分析与评价

a) 噪声源强

噪声较大的机械有反铲挖掘机、水陆两栖挖掘机、推土机、自卸汽车等。主要噪声源及源强见表 5.7.2-1。

<table>
<thead>
<tr>
<th>序号</th>
<th>机械名称</th>
<th>检点距离（m）</th>
<th>噪声源强 dBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>反铲挖掘机</td>
<td>1</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>水陆两栖挖掘机</td>
<td>1</td>
<td>95</td>
</tr>
<tr>
<td>3</td>
<td>推土机</td>
<td>1</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>自卸汽车</td>
<td>1</td>
<td>95</td>
</tr>
<tr>
<td>5</td>
<td>潜水泵</td>
<td>1</td>
<td>58</td>
</tr>
</tbody>
</table>
b) 预测模式

根据《环境影响评价技术导则 声环境》(HJ2.4-2009)的技术要求，拟采用下列预测公式计算施工机械点源对声环境敏感点的影响。

\[L_A(r) = L_A(r_0) - 20 \log\left(\frac{r}{r_0}\right) - \Delta L \]

式中：\(L_A(r) \) ——距声源 \(r \) 处的 A 声级，dB；
\(L_A(r_0) \) ——距声源 \(r_0 \) 处的 A 声级，dB；
\(r \) ——预测点与声源的距离，m；
\(r_0 \) ——测点与声源的距离，m；
\(\Delta L \) ——其它因素引起的噪声衰减量，dB。

\(\Delta L \) 噪声衰减量主要包括空气吸收引起的衰减(Aatm)、地面效应衰减(Agr)、屏障引起的衰减(Abar)。其中空气吸收衰减一般情况下每 100m 为 0.40dB(A)。地面效应衰减根据地面类型可分为坚实地面、疏松地面和混合地面，地面效应引起的附加衰减量的上限为 10dB(A)。屏障引起的衰减一般包括实体声屏障、稀疏声屏障和封闭隔墙，其中实体声屏障传声损失 LTL 一般>34dB(A)，稀疏声屏障如密集的林带对宽带噪声典型的衰减量是每 10m 衰减 1~2dB(A)。

用声能迭加求出预测点的噪声级:

\[L_{\text{总}} = 10 \log\left(\sum \frac{10^{0.1L_i}}{n}\right) \]

式中：\(L_{\text{总}} \) ——迭加声级，dB；
\(L_i \) ——单个声源影响声级，dB；
\(n \) ——n 个声压级。

c) 噪声预测与评价

1) 施工机械运行噪声影响范围

各声源噪声级均取最大声级进行预测，考虑所在区为空气吸声及地面衰减等因素，预测结果见表 5.7.2-1。

<table>
<thead>
<tr>
<th>表 5.7.2-1 主要固定连续噪声源衰减预测表</th>
<th>单位：dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>预测值声源</td>
<td>源强 db</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>反铲挖掘机</td>
<td>85</td>
</tr>
<tr>
<td>水陆两栖挖</td>
<td>95</td>
</tr>
</tbody>
</table>
预测值

<table>
<thead>
<tr>
<th>源强（db）</th>
<th>离声源不同距离（m）的噪声预测值（dB）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20m</td>
</tr>
<tr>
<td>掘机</td>
<td>85.98</td>
</tr>
<tr>
<td>推土机</td>
<td>68.98</td>
</tr>
<tr>
<td>自卸汽车</td>
<td>95.98</td>
</tr>
<tr>
<td>潜水泵</td>
<td>31.98</td>
</tr>
</tbody>
</table>

由表中可见，自卸汽车和挖掘机，噪声影响范围较大，在 100m 时，可满足《建筑施工场界环境噪声排放标准》之 55dB（A）限值标准。

2) 声环境敏感目标噪声影响预测

根据对本项目敏感点分布情况调查，距离最近的敏感点有 245m。根据机械产生的噪声预测分析，本项目施工区域对声环境敏感点基本没有影响。运输车辆经过敏感点时降速行使，禁止鸣笛。

5.8 固体废弃物环境影响

本工程沟壕疏通开挖总共约 37.24 万 m³，其中清淤约 4.67 万 m³，粘土开挖约 32.56 万 m³，淤泥就近摊铺于水系两侧，粘土大部分调运往二施工区用于滩涂地形营造的表面覆盖，部分用于台田营造，剩余部分用于表土置换；深泓开挖约 16.47 万 m³，就近摊铺于泓沟两侧；围堰拆除约 6.83 万 m³，分别用于地形营造和就近摊铺处理；高风险土壤清理约 19.09 万 m³，全部就近用于台田地形营造；底泥清淤约 25.88 万 m³，全部就近用于滩涂地形营造，因此本工程施工过程中不产生土方废弃物。

本工程的固体废物主要为生活垃圾。施工高峰期人数 300 人，施工期为 12 个月。施工人员的生活垃圾按 0.5kg/人·d 考虑，则施工期间生活垃圾每天排放量约为 150kg/d，施工期共产生生活垃圾 54t。

对于施工现场产生的生活垃圾，应在施工现场附近设置密闭式垃圾池，对垃圾进行集中收集后由当地环卫部门统一处理。

5.9 环境风险影响

5.9.1 水质恶化风险

本项目建设内容主要是退耕还淀，挖沟壕、拆除围堤围堰，以改善水动力条件，优先建成芦苇台田湿地，同时进行存量污水处理、底泥清理、表层土壤生态
治理等内源污染净化，并种植湿生植物与水生植物，以恢复改善湿地生态系统。本工程建设范围全部在保护区内，环境风险主要主要存在于两方面，一是施工期施工机械燃料事故泄漏导致淀泊水质下降，二是退耕还淀土壤被水浸泡、底泥扰动可能导致水质恶化。

本工程施工期作业区由于管理疏忽、操作违反规程或失误等原因引起跑、冒、滴、漏事故的可能性较大，一旦发生机械燃料泄漏污染事故，将对评价区域内的水生生物、鱼类产生影响较大。

工程区荷塘底泥监测结果表明：污染物含量均低于《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB 15618-2018)污染风险筛选值，白洋淀湿地内沉积物中的氮、磷、有机质处于较低水平，但藻荆淀荷塘表层底泥中总氮、总磷和有机质含量均超过白洋淀湿地内沉积物污染量，具有一定污染性。藻荆淀现状旱地氮磷含量高，这些耕地退耕还湿、受水位上涨淹没浸泡后，表层土壤中的营养物质溶解进入水体，会对淀区水质带来不利影响。

5.9.2 外来物种或有害生物入侵风险

评价区内调查到外来入侵物种有：反枝苋、刺苋、土荆芥等。本工程施工基本上是封闭施工，施工期间人流、车辆加大，可能导致外来物种种群与数量加大，从而对保护区土著物种产生一定的排斥，对本地植被类型造成一定影响。

5.9.3 保护区重要遗传资源流失风险

项目建设可能会使部分植物物种个体消失，这些个体所承载的遗传基因也会随之消失，但不会造成某个植物种类在重点影响评价区或保护区内消失。候鸟迁徙、越冬季节的工程施工，频繁的人为干扰、施工噪音和机械频繁移动也会对鸟类产生一定程度的影响，导致鸟类在该区域分布的不稳定或者被迫迁往其他区域越冬栖息，不会造成保护区遗传资源流失。
6. 环境保护措施及其可行性论证

6.1 环境管理措施

工程位于白洋淀省级湿地自然保护区、省级风景名胜区与国家级水产种质资源保护区，环境敏感，为确保本环评提出的各项环保措施得以严格落实，工程建成后淀区水动力条件得以恢复，湿地生态系统特色景观风貌得以改善，淀区水环境质量得以提升，湿地生态系统功能得以增强，建设单位应加强项目区环境管理，特别是施工期环境管理，重点管理措施如下：

（1）招投标设计阶段，应加强各项环保措施实施的审查评估。建设单位在招标文件的编制过程中，应将审批通过的环评文件及批复意见所提出的各项环保措施编入招投标相应的条款中；

（2）施工前，按照《河北省湿地保护条例》编制施工期湿地保护方案，并报送地方职能管理部门批准。

（3）施工阶段，应加强环境监理与环境监测的组织实施，及时发现问题及纠正处理。施工过程中接受自然保护区、水产种质资源保护区与风景名胜区等保护地职能管理部门的技术指导与监督管理。

（4）工程竣工阶段，及时组织环保验收，对验收发现的环境问题及时整改。

（5）工程营运期，加强跟踪监测与评价，发现问题及时整改。

施工期的环境管理非常重要，除了加强上述环境监理与环境监测、强化生态敏感区的管理措施外，还要重视以下文明施工管理措施。

施工单位应全面贯彻《建筑工程文明施工管理办法》，进行文明施工。一方面可以保持项目所在区景观，另一方面，可以降低施工期的污染强度，减轻对环境的污染影响，包括对施工现场围挡、材料堆放及运输、临时设施、安全设施、施工噪声控制、渣土处理、污水排放、施工周围环境管理等内容，重点加强施工期对白洋淀省级自然保护区、水产种质资源保护区与风景名胜区保护目标的防护管理。

（1）施工单位的项目经理（项目负责人）全面负责施工过程中的管理，根据工程规模、技术繁简程度和施工现场的具体情况，建立文明施工责任制，并组织实施。建设单位（或工程监理公司）应负责工程合同中规定的由建设单位负责承办、配合、协调的工作。

（2）项目应当在批准的施工现场范围内组织施工。经批准的施工现场和临
时占用的道路，施工单位不得任意挖掘或者擅自改变其使用性质。施工单位应当按照施工总平面布置图设置临时设施和堆放施工设备、材料；未经批准，不得在施工现场外堆放建筑材料、机具等。

（3）施工单位必须在施工现场醒目处设置施工标牌，并在标牌上标明工程项目名称、结构层次、面积、开竣工日期、建设单位、设计单位、建筑监理单位和施工单位的名称及工程负责人姓名等。

（4）建筑工程施工现场必须设置围档，围档高度应不低于 2m。围档应当牢固、整洁、美观。

（5）施工现场出入口应当设置符合标准和规范的运输车辆冲洗和排水设施。

（6）施工单位应当妥善处理施工废水，排水系统良好，场地场貌整洁。施工冲洗的泥浆，未经处理，不得直排。

（7）施工产生的建筑垃圾、生活垃圾，应当及时清运。运输车辆驶出施工现场前，应当冲洗干净，不得带泥出场，污染路面。

（8）除抢险、抢修外，夜间（22 时至次日 6 时）禁止高噪声设备夜间作业。由于生产工艺上的连续性或者其他特殊原因，夜间施工不能避免环境噪声污染的，施工单位必须事先持建设行政主管部门出具的证明，报经环保部门审查同意，市人民政府批准。

（9）施工现场内必须坚持日做日清，工完场清，严禁乱堆乱放建筑垃圾。工程竣工后，施工单位应当拆除现场围档和临时设施，清除场内余留物料和垃圾。

6.2 水土流失防治

本工程水保方案提出了以下水土流失防治措施。

a）主体工程区

湿地边坡是主体工程区主要的水土流失区域，主体设计已对湿地设计了植被修复等边坡防治措施，将其界定为水土保持措施，纳入水土流失防治措施体系。

在主体工程设计的基础上补充施工期土方临时堆存过程中的临时拦挡和临时覆盖措施。

1) 临时措施
① 临时拦挡

主体工程区开挖士方临时堆存于不影响主体施工的区域内，采用袋装土挡墙进行临时围护。土袋挡墙呈“品”字型分层摆放，顶宽 0.5m，底宽 0.7m，高 0.5m，
土袋可重复使用。经估算，需土袋挡墙 10000m，编织袋装土填筑 3000m³。

② 临时覆盖
为了避免边坡长时间裸露造成的水土流失，施工期间需对本区裸露地表及临时堆土采用密目网进行临时覆盖。经统计，需密目网 400000m²。

3) 植物措施
主体工程考虑了本区的植物措施，植物措施满足湿地设计的相关要求。

b) 施工生产生活区
本工程所涉及的施工场地主要包括：施工营地、综合仓库、施工设备停放场等，主要的施工场地布置于工程区内西南角处，布置面积约 5000m²。主体已考虑到施工前的表土收集及后期绿化，在主体工程设计的基础上补充施工期土方临时堆积过程中的临时拦挡和临时覆盖措施。

1) 工程措施
主体工程考虑施工前对区域内的表土进行收集，并集中堆存至附近的施工场地内，共剥离收集表土 0.15 万 m³。

2) 临时措施
① 临时拦挡措施
施工生产生活区开挖土方临时堆存于不影响主体施工的区域内，采用袋装土挡墙进行临时围护。土挡墙呈“品”字型分层摆放，顶宽 0.5m，底宽 0.7m，高 0.5m，土袋可重复使用。经估算，需土袋挡墙 200m，编制袋装土填筑 60m³。

② 临时覆盖
为了避免边坡长时间裸露造成的水土流失，施工期间需对本区裸露地表及临时堆土采用密目网进行临时覆盖。经统计，需密目网 1000m²。

3) 植物措施
该区域位于主体工程区内，主体工期考虑后期根据主体工程区内绿化安排统一进行绿化。

6.3 生态环境保护
6.3.1 生态系统的保护措施
6.3.1.1 森林生态系统的保护措施
工程对森林生态系统的影响主要为工程临时占地、施工产生的扬尘、施工人
员活动等对植被的破坏，从而间接影响在森林生态系统中活动的动物种类。因此针对这些影响，建议采取以下措施对森林生态系统进行保护：

（1）加强宣传教育，特别是对施工人员进行相关法律法规的宣传，提高其保护动植物资源、生态环境和生物多样性等的意识；

（2）加强施工管理与监理，优化施工设计，尽量减少施工占地及施工活动造成的森林植被损失，减少对野生动物栖息地的破坏；

（3）对工程占用森林植被的区域，严格划定施工区域，防止施工人员对工程区周其他森林植被产生影响，对临时占用森林植被的区域，在工程完工后及时进行植被恢复和绿化；

（4）施工期加强森林防护，如在施工区、临时施工生产生活区及周围林地附近竖立防火警示牌，加强用火管理，以预防和杜绝森林火灾发生；

（5）施工过程中定期采取洒水喷淋措施，减小扬尘对植被的影响。

6.3.1.2 草地生态系统的保护措施

（1）严格划定施工范围，避免破坏占地区外草地生态系统。

（2）适时开展生态恢复及水土保持工作，施工结束后及时对占地区进行植被恢复，避免水土流失等对其影响。

6.3.1.3 湿地生态系统的保护措施

（1）在施工区附近沟渠做好截排水措施，减少施工区域地表径流汇入沟渠的水量。

（2）加强施工营地等的防护，避免施工材料随意堆放，施工废水和施工人员生活污水直接排入水体中。

（3）机械和车辆冲洗应尽量要求施工机械和车辆到附近专门清洗点或修理点进行清洗和修理，减少产生的废水对评价区内湿地的影响。

（4）做好施工废水、固废的收集工作，对建筑材料等应铺盖防尘网做好防水、防风等工作，对施工区定期洒水抑尘。

（5）做好水土流失的防护，避免对湿地的破坏，减少因水土流失而对水体产生的污染。施工结束后，加强生态监测工作，使评价区湿地生态系统向有利方向发展。

6.3.1.4 农田生态系统的保护措施
（1）工程施工时间尽量避免农作物收获时间，如在农作物收割之后开始施工，可减少经济损失；
（2）对施工运输车辆采取遮挡措施，尽量避免粉末类材料等对农业土壤和灌溉水体的影响；
（3）在农田周围施工时，尽量减少施工人员的活动、机械的碾压等对农作物的影响及对农田土质的影响。

6.3.2 陆生植物的保护措施

6.3.2.1 生态影响的避免措施
（1）优化临时占地的选址，减少临时淤泥堆积区域，尽量减小临时占地对植被的占用影响。
（2）做好底泥清理的应急预案，尽量减少清淤过程中氮磷与重金属释放对周边植物生长的影响。

6.3.2.2 生态影响的减缓措施
（1）划定施工活动范围，严禁越界施工。施工前，在各主要施工生产生活区及植被发育良好的区域设置生态保护警示牌，标明工程征地范围，禁止越界施工或破坏周边植被，尽量减少人为干扰的影响。
（2）优化施工组织设计、加强施工组织和管理，作好施工组织安排工作，提高工程施工效率，缩短施工时间。
（3）避免车辆在运输过程中对当地植被的碾压，尽量减少对区域植被的破坏，同时要注意避免扬尘、施工废水及生活污水对区域土壤的污染，保证施工对区域植物生境的破坏最小化。
（4）明确施工工序，杜绝超挖、乱挖等不规范施工方式。在施工过程中，开挖回填士方均按设计要求进行施工，场地临时堆放的士方应布置在较高区域，避免受到地表径流的冲刷引发水土流失。

6.3.2.3 生态影响的恢复和补偿措施
水系疏导工程完工后，严格按照主体工程设计的湿地健康工程进行植被修复。湿地健康工程主要通过生境营造及动植物恢复进行建设。生境营造针对4种湿地类型典型地形特征，遵循最小干预原则，充分利用现有地形肌理，进行多样化湿地生境改造，为工程范围内健康生态系统建立提供良好的基础地形条件。动植物
恢复基于各湿地类型健康生态系统的分析与目标恢复物种的选择，针对性的植被物种恢复、栖息地微地形整理优化以及鱼类、底栖等动物物种的投放。4种湿地类型生境营造及动植物恢复方案如下：

（1）沟壕湿地

生境营造：依照现有地形及农田肌理进行适量疏导、开挖，形成沟壕相间、水网散布的生境骨架，满足工程范围各斑块生态补水。营造断面形式多样的水道形态，利用剩余土方塑造高地微地形，形成丰富的水下、水路交错带、高地地形，为健康湿地恢复提供良好的生境条件。

动植物恢复：台地——保留原有乔木，主要种植芦苇，搭配种植低矮的湿生草本，如酢浆草、苔草等。

生态河道——一、二级河道内布置浮叶植物；投放水质净化能力强的底栖动物。

岸坡——种植芦苇、香蒲等挺水植物，形成生态护岸。

物种选择及数量：

<table>
<thead>
<tr>
<th>序号</th>
<th>名称</th>
<th>单位</th>
<th>数量</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>芦苇</td>
<td>m²</td>
<td>108200</td>
</tr>
<tr>
<td>2</td>
<td>酢浆草</td>
<td>m²</td>
<td>10820</td>
</tr>
<tr>
<td>3</td>
<td>苔草</td>
<td>m²</td>
<td>10820</td>
</tr>
<tr>
<td>4</td>
<td>香蒲</td>
<td>m²</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>睡莲</td>
<td>m²</td>
<td>1423</td>
</tr>
<tr>
<td>6</td>
<td>田螺</td>
<td>kg</td>
<td>720</td>
</tr>
<tr>
<td>7</td>
<td>环棱螺</td>
<td>kg</td>
<td>720</td>
</tr>
<tr>
<td>8</td>
<td>河蚌</td>
<td>kg</td>
<td>360</td>
</tr>
</tbody>
</table>

（2）季节性草本沼泽

生境营造：依照现有河网肌理进行湿地水道疏通，形成三级季节性淹没水道，利用剩余土方塑造高地微地形，形成丰富的水下、水路交错带、高地地形，为健
康湿地恢复提供良好的生境条件。

动植物恢复：草本沼泽——种植水芹、菰等，搭配部分小泽泻、水蓼等伴生景观物种。

生态河道——一、二级河道内布置多种浮叶植物和沉水植物；投放滤食性鱼类；投放水质净化能力强的底栖动物。

岸坡——种植芦苇、香蒲等挺水植物，形成生态护岸。

物种选择及数量：

表 6.3.2-2 季节性草本沼泽湿地动植物恢复物种及数量

<table>
<thead>
<tr>
<th>序号</th>
<th>名称</th>
<th>单位</th>
<th>数量</th>
<th>序号</th>
<th>名称</th>
<th>单位</th>
<th>数量</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>芦苇</td>
<td>m²</td>
<td>200</td>
<td>11</td>
<td>田螺</td>
<td>kg</td>
<td>850</td>
</tr>
<tr>
<td>2</td>
<td>香蒲</td>
<td>m²</td>
<td>150</td>
<td>12</td>
<td>环棱螺</td>
<td>kg</td>
<td>850</td>
</tr>
<tr>
<td>3</td>
<td>茼</td>
<td>m²</td>
<td>159745</td>
<td>13</td>
<td>河蚌</td>
<td>kg</td>
<td>425</td>
</tr>
<tr>
<td>4</td>
<td>小泽泻</td>
<td>m²</td>
<td>1140</td>
<td>14</td>
<td>水芹</td>
<td>m²</td>
<td>55430</td>
</tr>
<tr>
<td>5</td>
<td>水蓼</td>
<td>m²</td>
<td>78</td>
<td>15</td>
<td>慈姑</td>
<td>m²</td>
<td>1675</td>
</tr>
<tr>
<td>6</td>
<td>睡莲</td>
<td>kg</td>
<td>1550</td>
<td>16</td>
<td>黄菖蒲</td>
<td>m²</td>
<td>1190</td>
</tr>
<tr>
<td>7</td>
<td>茊实</td>
<td>m²</td>
<td>1100</td>
<td>17</td>
<td>苔草</td>
<td>m²</td>
<td>637</td>
</tr>
<tr>
<td>8</td>
<td>矮生耐寒苦草</td>
<td>m²</td>
<td>2115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>刺苦草</td>
<td>m²</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>光叶眼子菜</td>
<td>m²</td>
<td>304</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（3）草本滩涂湿地

生境营造：现状塘埂的适宜打断，营造良好的水动力条件，营造健康水生态活水条件；通过生态滩涂锁定底泥释放，同时营造生境丰富的缓坡水陆交错带，丰富交错带水深变化；现状废弃水稻田通过微地形改造，形成白洋淀特色条状苇海台田形态景观。

动植物恢复：草本滩涂——滩涂水陆交错带依据水深条件种植香蒲、菰等；面积较小的保留光滩；沿岸布置苔草、纸莎草等湿生草本；滩涂周边水域配置浮
叶植物形成特色浮叶植物群；

苇海台田——种植芦苇，形成苇海台田景象。

物种选择及数量：

表 6.3.2-3 草本滩涂湿地动植物恢复物种及数量

<table>
<thead>
<tr>
<th>序号</th>
<th>名称</th>
<th>单位</th>
<th>数量</th>
<th>序号</th>
<th>名称</th>
<th>单位</th>
<th>数量</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>芦苇</td>
<td>m²</td>
<td>301661</td>
<td>11</td>
<td>田螺</td>
<td>kg</td>
<td>1610</td>
</tr>
<tr>
<td>2</td>
<td>香蒲</td>
<td>m²</td>
<td>300</td>
<td>12</td>
<td>环棱螺</td>
<td>kg</td>
<td>1610</td>
</tr>
<tr>
<td>3</td>
<td>蓖</td>
<td>m²</td>
<td>300</td>
<td>13</td>
<td>河蚌</td>
<td>kg</td>
<td>805</td>
</tr>
<tr>
<td>4</td>
<td>小泽泻</td>
<td>m²</td>
<td>3388</td>
<td>14</td>
<td>苞草</td>
<td>m²</td>
<td>3000</td>
</tr>
<tr>
<td>5</td>
<td>水蓼</td>
<td>m²</td>
<td>257</td>
<td>15</td>
<td>纸莎草</td>
<td>m²</td>
<td>2500</td>
</tr>
<tr>
<td>6</td>
<td>睡莲</td>
<td>kg</td>
<td>10650</td>
<td>16</td>
<td>荆三棱</td>
<td>m²</td>
<td>2300</td>
</tr>
<tr>
<td>7</td>
<td>蒡实</td>
<td>m²</td>
<td>6834</td>
<td>17</td>
<td>苕菜</td>
<td>m²</td>
<td>5000</td>
</tr>
<tr>
<td>8</td>
<td>矮生耐寒苦草</td>
<td>m²</td>
<td>3220</td>
<td>18</td>
<td>水鳖</td>
<td>m²</td>
<td>4500</td>
</tr>
<tr>
<td>9</td>
<td>刺苦草</td>
<td>m²</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>光叶眼子菜</td>
<td>m²</td>
<td>690</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（4）湖泊湿地

生境营造：现状塘埂的适宜打断，营造良好的水动力条件；进行湖泊湿地荷花抽稀及深泓开挖，形成湖泊湿地区主流通道，营造大面积深水水域，丰富水下地形的同时，给水鸟提供良好的栖息场所；配置多处人工鱼巢，为鱼类提供良好栖息场所。

动植物恢复：植被恢复——对原有荷塘抽稀，形成较大规模的开阔水面，防止荷花连片生长；深泓边缘搭配浮叶植物；水下配置沉水植物，构建水下森林生态系统。

动物恢复——投放螺贝类底栖，多食物网层级鱼类。

物种选择及数量：

表 6.3.2-4 湖泊湿地动植物恢复物种及数量
<table>
<thead>
<tr>
<th>序号</th>
<th>名称</th>
<th>单位</th>
<th>数量</th>
<th>序号</th>
<th>名称</th>
<th>单位</th>
<th>数量</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>茼草</td>
<td>m²</td>
<td>9246</td>
<td>11</td>
<td>黄颡鱼</td>
<td>kg</td>
<td>1250</td>
</tr>
<tr>
<td>2</td>
<td>马来眼子菜</td>
<td>m²</td>
<td>9638</td>
<td>12</td>
<td>乌鳢</td>
<td>kg</td>
<td>1950</td>
</tr>
<tr>
<td>3</td>
<td>穗花狐尾藻</td>
<td>m²</td>
<td>8220</td>
<td>13</td>
<td>鳜鱼</td>
<td>kg</td>
<td>1100</td>
</tr>
<tr>
<td>4</td>
<td>金鱼藻</td>
<td>m²</td>
<td>8058</td>
<td>14</td>
<td>鳙鱼</td>
<td>kg</td>
<td>1100</td>
</tr>
<tr>
<td>5</td>
<td>刺苦草</td>
<td>m²</td>
<td>13880</td>
<td>15</td>
<td>麦穗鱼</td>
<td>kg</td>
<td>500</td>
</tr>
<tr>
<td>6</td>
<td>睡莲</td>
<td>m²</td>
<td>7820</td>
<td>16</td>
<td>白条鱼</td>
<td>kg</td>
<td>450</td>
</tr>
<tr>
<td>7</td>
<td>田螺</td>
<td>kg</td>
<td>5650</td>
<td>17</td>
<td>人工鱼巢</td>
<td>个</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>环棱螺</td>
<td>kg</td>
<td>5650</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>河蚌</td>
<td>kg</td>
<td>2825</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>鳤鱼</td>
<td>kg</td>
<td>2500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.3.2.4 生态影响的管理措施

（1）加强对施工人员及施工活动的管理。施工过程中，加强对施工人员的管理，禁止施工人员对植被随意攀折、践踏，严格限制人员的活动范围，严禁破坏沿线的生态环境。

（2）工程施工期、运行期都应进行对植物资源的影响进行监测或调查。

（3）政府职能部门和项目业主要高度重视，落实监督机制，保证各项生态措施的实施。工程设施工期、运行期都应进行生态影响的监测或调查。通过监测，了解植被的变化，数量变化以及生态系统整体性变化，加强对生态的管理，在工程管理机构，应设置生态环境管理人员，建立各种管理和报告制度，开展对工程影响区的环境教育，提高施工人员和管理人员环境意识。通过动态监测和完善管理，使生态向良性或有利方向发展。

6.3.2.5 对重点保护野生植物的保护措施

在评价区内调查到河北省保护野生植物萻菜 1 处面积约 14.3hm²。此次调查到的河北省重点保护野生植物萻菜不在工程的施工区域距离施工二区东侧的最近距离约 5m 工程施工建设可能会对其造成不利影响工程在施工建设时应对其采
取以下措施进行就地保护。

（1）在保护植物周边工程施工时应设置提示牌标明保护植物的名称、范围及注意事项，工程施工时应避免在保护植物周边设置临时淤泥堆存区并严格划定施工范围严禁越线施工。

（2）施工废水应严格实施达标排放，不在保护植物周边水域排放，定时对保护植物周边施工道路进行洒水除尘。

6.3.3 陆生动物的保护措施

6.3.3.1 生态影响的避免措施

（1）提高施工人员的保护意识，严禁捕猎野生动物。施工期间，以公告、宣传单、板报和会议等形式，加强对施工人员的环境保护宣传教育和保护野生动物常识的宣传，提高施工人员的环境保护意识，使其在施工中自觉保护生态环境及野生动物，特别是重点保护野生动物，并遵守相关的生态保护规定。

（2）工程施工时，要做好施工污水的管理工作，施工人员的生活污水应集中收集处理，避免对傍水生活的野生动物的生境造成污染。

6.3.3.2 生态影响的减缓措施

（1）在施工机械操作中，应采取拦挡措施以减小噪声影响。同时，施工应尽量避免在夜晚、晨昏和正午，以减小对敏感鸟类活动的干扰。

（2）合理安排施工时序，优化施工组织，错开施工高峰期，避免同一区域出现大规模的施工。

（3）施工期间，在各主要施工作业区设置生态保护警示牌，警示牌上标明工程施工区范围，禁止施工人员越界施工或砍伐林木，禁止捕猎野生动物，尽量减少占地造成的植被损失和对野生动物的伤害。

（4）施工期间该区域的进行洒水抑尘，减少扬尘、粉尘等对动物活动的影响。

（5）施工期间加强施工场地等处的各类卫生管理（如个人卫生、粪便和生活污水），避免生活污水的直接排放，减少水体污染；保护动物的生境。生活垃圾及时清运，避免蚊蝇滋生、鼠类聚集。

（6）车辆在场内道路上行驶时，严格控制车速，在车辆行驶时如遇野生动物需减速缓行，以免伤及。

6.3.3.3 生态影响的恢复和补偿措施
（1）工程完工后尽快做好生态环境的恢复工作，对本项目占用区外的临时施工场地、施工道路等尽快恢复临时占用区的植被，以尽量减少生境破坏对动物的不利影响。

（2）根据初步报告，健康湿地工程将会对区域动植物进行恢复，种植湿地植物及投放水生物，有助于鸟类栖息地的恢复。运营期需加强野生动物监测，观测湿地生境营造、动植物恢复效果。

6.3.3.4 生态影响的管理措施

（1）编制珍稀野生动物保护手册，在施工期间对施工人员和附近居民进行生态保护的宣传教育，明确工程区域涉及的所有珍稀保护动物名录，说明国家法律对其的保护要求和保护意义，介绍其生活习性、栖息环境、种群分布以及在工程区域出没情况。

（2）在施工和运行期均要制定严格的规章制度，规范工作人员的行为，坚决禁止偷猎、伤害、恐吓、袭击鸟类和其他动物的行为发生。

（3）从保护生态与环境的角度出发，施工期间加强施工人员生活污水排放管理，减少水体污染，做好工程完工后生态的恢复工作，以尽量减少植被破坏及对水土流失、水质和水生生物的不利影响。

（4）处理好多样性保护与安全防疫的关系。评价区的兽类主要以鼠类为主，部分鼠类如褐家鼠、小家鼠等，为自然疫源性疾病的传播者，生活垃圾、生活废水的随意排放会导致鼠类数量增多，密度加大，增加传染病发生的几率，可能危害评价区当地居民及施工人员的健康，因此，既要维护自然生态系统的食物链关系，又要重视对居民和施工人员防疫工作。

6.3.3.5 对重点保护野生动物的保护措施

根据本工程对国家重点保护动物重点保护动物的分析可知，工程对重点保护动物的影响主要是生境占用、噪声的驱赶等，因此，针对重点保护动物的措施主要包括控制征地范围，及时对临时占地进行恢复；选用低噪音设备，禁止正午和晨昏进行高噪声活动，减少对重点保护动物的影响。

<table>
<thead>
<tr>
<th>国家重点保护野生动物</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>中文名、拉丁名</td>
<td>区系、居留型</td>
<td>保护等级</td>
<td>分布</td>
<td>影响</td>
</tr>
</tbody>
</table>
中文名、拉丁名 | 区系、居留型 | 保护等级 | 分布 | 影响 | 措施
--- | --- | --- | --- | --- | ---
1. 大鸨 | 旅 | 国家Ⅰ级 | 评价区内远离居民的麦田。 | 施工期的占地可能会占用其部分生境，以及施工活动噪声、扬尘的干扰 | 避免在大鸨迁徙季节在土料场挖土，减少对其干扰。 |
2. 黑鸢 | 留 | 国家Ⅱ级 | 活动范围广，在评价区草原上空偶有翱翔 | 施工期的占地可能会占用其部分生境，以及施工活动噪声的干扰 | 严格控制征地范围，禁止越界施工；晨昏及正午避免高噪音活动，施工尽量安排在白天进行，夜间不施工。 |
3. 白尾鹞 | 夏 | 国家Ⅱ级 | | | |
4. 鹳鹞 | 旅 | 国家Ⅱ级 | | | |

6.3.4 水生生物保护措施

6.3.4.1 生态影响的避免与消减措施

（1）施工期水生生态保护措施

①合理布置施工场地，划界施工，施工活动应严格控制在施工区域内。

②建议减少抽排水区域，对滩涂地形营造施工过程中收集到的鱼类进行转移等措施以减少对鱼类资源的损失。

③加强宣传，编印施工环境保护手册，增强施工人员的环境保护意识。

④建立和完善鱼类保护规章，严禁施工人员捕捞。

⑤加强监管，严格按照环保要求施工，避免生产废水、生活污水直接排入水体及周边环境，避免发生水污染事故。

（2）运行期水生生态保护措施

①合理综合利用水体，维护区域水生态平衡。

②加强管理，监控放生行为，禁止盲目放生，防止外来物种入侵而破坏原有的生态系统。

6.3.4.2 生态影响的恢复与补偿措施

本工程对水生生态的影响主要为底泥疏浚、滩涂营造、深泓开挖工程会破坏底栖生物原有生存环境，造成施工区底栖生物大量损失，并且会破坏鲤、鲫等产粘草基质鱼类的适宜产卵场所，对其繁殖造成影响。而湿地生境营造可以为鱼类、底栖生物提供其他水域适宜的生存环境，每年增殖放流可补充鱼类和底栖生物的损失量，减少对水生生物生境破坏的影响。所以恢复与补偿措施主要采取增殖放
流和生境营造措施。该措施已纳入本工程健康湿地生境营造工程，因此本报告提出主要针对工程实施后进行多年连续监测，以对增殖放流物种和数量进行调控。此外，针对修复后的效果进行后评估，以保证工程实施的有效性。

6.3.4.3 生态影响的管理措施

（1）工程施工前，应按照《河北省湿地保护条例》，应当经县级人民政府有关湿地保护管理部门批准；建设单位应编制相应的湿地保护方案，并严格按照湿地保护方案进行施工，减少对湿地生态系统的影响。

（2）施工期加强对评价水域的管理工作，制定水生生物保护规定，使施工人员在施工中能自觉保护水生生态环境，并遵守相关的生态保护规定。严禁施工人员在施工水域进行捕鱼或从事其它有碍生态环境及鱼类保护的活动。

（3）运营期加强宣教活动。项目运营期应加强宣传教育活动，可采用宣传标语、广播及现代科技手段等对进入藻苲淀的人群进行宣传教育，提高人们环境保护意识，自觉保护藻苲淀生态环境。

（4）施工期和运营期，加强对施工水域水生生物的监测工作。

6.4 地表水环境保护

6.4.1 含泥废水

施工含泥废水来自淤泥堆放、主体工程施工产生的泥浆水等，主要污染物为悬浮物，悬浮物最大浓度为 20000mg/L，泥浆水经过沉淀池处理后，上清液回用于施工或就近排入工区周边水沟。但工程区位于白洋淀省级自然保护区内，应注意不能排入核心区与缓冲区。堆泥区浑浊水体主要来源于底泥和间隙水中多数溶解态污染物的释放，主要污染物为 COD、SS 及营养物等，也应再次沉淀处理。氮磷含量与重金属含量较高淤泥堆放区的含泥废水应采用超磁一体化污水处理设备进行处理，达到《地表水环境质量标准》IV 类标准后方可排放。

6.4.2 车辆冲洗废水

施工现场出入口设洗车池、沉淀池，确保进出工程车辆和其他车辆不带泥上路，清洗污水经过沉淀池含泥沙污水、泥浆水经沉淀池沉淀处理达标（不低于现状上游来水水质）后回用于施工场地的洒水降尘，沉淀池的废水和淤泥用封闭的专用车辆进行运输，设置专用的车辆冲洗点并配套废水沉淀池。

设备清洗含油废水设计进水水质 SS 为 1000mg/L、石油类浓度为 50mg/L。针对设备清洗废水处理，本评价要求采用小型洗车池、沉淀池对含油废水进行处
选用隔油沉淀工艺，设备清洗含油废水首先进入隔油沉淀池进行沉淀、隔油处理，最后进入回用水池，加药剂调节水质 pH 值至中性，出水可作为施工营地车辆冲洗用水使用。隔油沉淀池产生的少量浮油及油渣外运交由有资质的单位处置，回用水池的污泥应脱水后外运处理，不能任意丢弃。处理工艺流程图见下图。

图 6.4.1-1 设备清洗含油废水处理工艺流程图

施工期间，施工废水和生活污水均不得以渗坑、渗井或漫流方式直接排放。

6.4.3 生活污水

本工程施工总工期 12 个月，施工高峰劳动力人数约 300 人。根据同类工程经验，按照每人每天产生 80L 污水计，产生污水量约 24m³/d。农村生活污水未经处理的直接排放浓度取 CODCr 300mg/L、NH3-N 20mg/L、TN 30mg/L、TP 4mg/L。生活污水种各污染物排放量为：CODCr 4.5kg/d、NH3-N 0.3kg/d、TN 0.45kg/d、TP 0.06g/d。工程施工期生活污水经化粪池初步处理达标后灌溉附近农田，其原因主要是化粪池具有低造价、低运行费用等优点，适用于污水量较小的工程，且周边农用地需要，废物重新利用，资源化。

另外，本工程施工作业区范围较大，施工活动较分散，3 个施工作业区各布置 1 个移动式卫生厕所，并委托地方环卫部门定期清理转运。

6.4.4 存量污水及底泥清理

对于劣 V 类存量污水工程采用苇海台田和超磁分离一体化设备进行处理。根据工程总体布置，存有劣 V 类污水的农田（总面积 65.11 万 m²）将建设成苇海台田，工程实施时，先完成其中的 31.32 万 m² 的苇海台田用于劣 V 类污水的处理，通过苇海台田处理污水。当湿地出水水质不满足 IV 类水质标准时，采用超磁分离一体化污水处理设备进一步净化，达到地表水环境质量标准 IV 类标准方可排
放。劣 V 类与 V 类区淤泥堆放区、超磁分离一体化处理装置区需要布置于实验
区运行，并且器械处理后的水需经检测达标后，才可排放。

本项目清淤工程应避开汛期，严格控制施工影响，合理安排工期。合理确定
工程处理系统水量处理规模，充分考虑周边地块类型和可利用情况，分片处理，
水泥协同，尽量缩短工期。选择在枯水期进行施工。项目河道清淤施工过程会对
附近局部的水质造成一定的影响，但随着扰动的停止，悬浮物能较快沉降，不会
对藻荡淀水质造成长期的、严重的影响。

针对高风险底泥（底泥营养物质释放风险为高风险），在清淤过程中，用两
栖式挖机施工过程中需尽可能低扰动清淤，针对施工期间可能对水质产生的影响，
需要设置防污屏作为隔离帷幕，形成相对封闭的清淤作业区，将少量扩散的污染
物隔离在作业区内沉淀，以减少对周围淀泊水质的影响。

将挖出的底泥先放置于就近的实验区，采用防渗漏的土工膜上进行干化处理，
待脱水至 60% 左右，转运至工程区南部实验区内低洼地形区，并用土工膜包裹，
然后覆盖种植土，种植芦苇等湿生植物。堆泥区的污水，采用超磁分离一体化设
备处理达标后，优先用于周边工程施用水及道路绿化、道路洒水降尘等。

6.5 环境空气污染防治

本项目为藻荡淀退耕还淀生态湿地恢复工程项目，其污染主要发生在施工期，
运营期几乎无环境污染。因此，本评价主要针对施工期主要废气污染，提出防治
措施。

6.5.1 施工扬尘污染防治措施

本项目施工过程建设单位和施工单位应严格执行《河北省大气污染防治条
例》、《河北省打赢蓝天保卫战三年作战计划（2018-2020 年）》、《河北省施工扬
尘防治办法》等环境保护要求，将施工扬尘对环境的影响降至最低程度。结合本
项目工程特点，提出以下防治措施。

1) 在场地出入口设置车辆冲洗台和冲洗设施，设有专人清洗车轮、车帮及
清扫出入口卫生，确保车辆不带泥上路，车辆运输时也应文明装卸。

2) 倒运土壤及运输等工序扬尘产生量较大，应尽量在无大风的天气条件下
进行，出现四级及以上大风天气时禁止进行产生大量扬尘的作业。

3) 施工现场作业面场地应坚实平整，并经常喷水抑尘、余料及时清理、禁
止随意丢弃，以减少工地内起尘的条件。

4) 施工现场堆放砂、石等散体物料的，应当密闭贮存；不能密闭的，应当按照规定设置严密围挡或者防风抑尘网，并采取有效覆盖措施防止扬尘。装卸物料应当采取密闭或者喷淋等方式控制扬尘排放。

5) 施工产生的渣土及废弃物应当随产随清，暂存的渣土应当集中堆放并全部苫盖，禁止渣土外溢至围挡以外或者露天存放，堆场应远离居民区设置。

6) 施工单位运输工程渣土及砂、石等散体建筑材料，应当采用密闭运输车辆，采取喷淋压尘装载，禁止超载并按指定时间、区域和路线行驶，避免尘土洒落增加道路扬尘。

7) 施工现场禁止焚烧橡胶、塑料、皮革、垃圾以及其他产生有毒有害烟尘和恶臭气体的物质。

在采取上述防治措施的同时，建设单位还应按照《防治城市扬尘污染技术规范》（HJ/T393-2007）的规定，在施工期间采取以下防治措施：

8) 施工期间，施工单位应根据《建设工程施工现场管理规定》的规定设置现场平面布置图、工程概况牌、安全生产牌、消防保卫牌、文明施工牌、环境保护牌、管理人员名单及监督电话牌等。

9) 建筑垃圾的防尘管理措施。施工工程中产生的弃土、弃料及其他建筑垃圾应及时清运。若在工地内堆置超过一周的，应采取覆盖防尘布、防尘网，定期喷洒抑尘剂，定期喷水压尘和其他有效的防尘措施，防止风蚀起尘及水蚀迁移。

通过采取以上措施，可有效减少施工扬尘对环境的影响。

6.5.2 机械燃油废气防治措施

施工单位须选用施工的燃油机械，尾气排放达不到国家标准的不得进场施工，施工机械用油应选用无铅汽油、零号柴油等污染物含量少的优质燃料；施工过程中应对燃油机械、运输车辆所装的消烟除尘装置进行定期检测，加强施工机械的维护和保养，确保排气装置处于良好的运行状态。对于发动机耗油多、效率低、排放尾气超标的机、旧车辆及时更新。

6.5.3 恶臭防治措施

荷塘底泥开挖工程属于开放式作业，施工过程中，应采取相应的防范措施后，可减少恶臭气体的影响。采用的措施如下：
1) 施工前期准备：工程进行前，施工方须提前告知附近居民，取得居民的支持和谅解，减少社会影响。

2) 施工过程要求：减少恶臭的扩散；加快施工进程，提高施工效率，防止底泥长时间扰动散发臭气，减少恶臭气体散发量。

3) 对地形营造处及时进行植被恢复，减少恶臭影响的持续时间和强度。

6.5.4 食堂油烟防治措施

在工地设置食堂，应使用清洁能源，禁止使用燃煤大灶或者将木材、油毡以及油漆等材料作为燃烧能源。每个施工营区食堂均设置油烟净化装置，达到《饮食业油烟排放标准》（GB18483-2001）限值要求。

6.6 声环境保护

1) 合理布局施工现场

合理科学地布局施工现场是减轻施工噪声影响的主要途径，如将施工现场的固定振动源相对集中，以减少影响的范围；对可固定的机械设备尽量安置在远离居民集中的区域。

2) 合理安排施工作业时间

在保证工程进度的前提下，合理安排作业时间，把排放噪声强度大的施工应尽量安排在昼间施工；因施工工艺要求必须进行夜间施工的，必须提前 3 日向所在地行政审批部门提出申请，申报《夜间施工许可证》，经审核批准后方可施工，未办理此证不可进行夜间施工，若延长夜间施工时间，必须再次向所在地行政审批部门提出申请。

3) 合理安排施工运输车辆的行驶路线和行驶时间

施工运输车辆，尤其是大型运输车辆，应按照有关部门的规定，确定合理运输路线和时间，避开住宅集中区等敏感目标和容易造成影响的时段。运输车辆确实需要穿过周边村镇时，要限速行驶，一般不超过 15km/h，并禁止使用喇叭，午间 12:30-14:00、夜晚 10 点以后应避免通行。

4) 合理选择施工机械设备

选用低噪声的设备和工艺，对振动较大的设备可使用减震机座；加强机械设备的维修和保养，保持设备低噪声运行状态，减少运行噪声；施工运输车辆在通过居民点等时，应减速缓行，控制车流量，禁止鸣放高音喇叭，并设置警示牌。保证场界噪声值满足《建筑施工场界环境噪声排放标准》中相应标准限制。
5) 倡导科学管理和文明施工

加强施工现场的科学管理，做好施工人员的环境保护意识的教育，大力倡导文明施工的自觉性，施工单位应严格按照有关要求进行文明施工，尽量降低人为因素造成施工噪声的加重。

6) 加强环境管理，接受环保部门环境监督

建设单位在进行工程承包时，应将有关施工噪声控制纳入承包内容，并在施工和工程监理过程中设专人负责，以确保控制施工噪声措施的实施。

7) 推土机、挖土机等强噪声源设备的操作人员可配备耳塞，加强操作人员自身防护。

8) 工程开工后，建设单位和施工单位必须成立群众来信接待处，接待处要认真接待来访的居民，接受并处理关于施工噪声扰民的意见，并于 3 日之内给予答复。

通过采取以上措施，施工噪声对周边敏感点影响较轻。

6.7 固体废弃物防治

为避免施工产生的固体废物对周围环境产生不利影响，应采取以下处理处置措施：

1) 强化施工人员的环保意识，尽量减少固体废物的产生，妥善处理生活垃圾，定期进行现场消毒。

2) 做好土石方平衡，开挖充分利用，减少土方弃弃。

2) 施工场地不得随意抛扔垃圾。施工现场附近设置密闭式垃圾桶，及时收集生活垃圾。施工人员生活垃圾应做到日产日清，委托环卫部门及时清运处理。

3) 机械车辆冲洗废水隔油池产生的污泥应交由有资质的单位进行处置。

6.8 环境风险防范

6.8.1 水质劣化环境风险防范措施

为防止施工期施工机械燃料事故泄漏导致淀泊水质下降环境风险，本工程施工作业区与整个白洋淀大水域间保存一完整的围堤间隔开，防止施工生产废水直接流入下游淀泊区。施工期定期检查最后一道围堤质量、高度，进出水口等，确保围堤高于汛期最大水位，防止异常降水引发溢水情况。

工程施工时严格实施主体工程设计及上述的清淤底泥处置措施。
6.8.2 外来物种入侵防范措施

评价区内调查的外来入侵物种有反枝苋、刺苋、土荆芥等。本工程施工基本上是封闭施工，外来物种入侵防范主要是防范本工程用地范围内及周边白洋淀内风媒传播的外来入侵物种，建议采取以下外来物种入侵防范措施：

（1）加大宣传力度，加强对外来入侵物种的识别能力，并对外来物种的危害以及传播途径向施工人员进行宣传。

（2）加快对工程区域内裸地的植被恢复进度，植被恢复时要以当地乡土树种为主，尽量密植或营造复层植物群落，迅速占领裸露空间，避免外来植物侵入。

（3）对于此次调查到的外来入侵植物应对其进行清处，防止其进一步的扩散生长。
7 白洋淀省级自然保护区影响评价及防护措施
7.1 白洋淀省级自然保护区影响评价
7.1.1 对自然保护区动植物资源的影响

拟建项目位于白洋淀自然保护区藻苲淀片区，占用保护区面积 540 hm²，涉及保护区核心区 226.7 hm²、缓冲区 281.01 hm²、实验区 32.29 hm²。均为临时占地。

水系疏导、内源污染净化工程等施工活动等会对自然保护区生物资源产生一定影响，主要影响因素有占地、施工活动及污染物等。

本工程在保护区内占地工程主要为耕地、荷塘，人为干扰较大。根据现场调查，占地区主要为种植小麦、水稻等，多为人工栽培植被，常见植物有加杨、芦苇、香蒲、扁秆荆三棱、鸢尾蒜、红蓼、白茅、刺儿菜、狐尾藻、蓧草等，常见的动物有白鹭、喜鹊、灰喜鹊、小䴙䴘、斑嘴鸭等。受占地影响的植被均为常见类型，动植物均为常见种，占地对区域动植物资源影响较小。另外，内源污染净化、荷塘抽稀等等产生的废气、废水、废渣等对植物的产生的影响，使得周围植物生长变缓、发育不良或死亡。但区域人为干扰已存在，植被多为栽培种，动物种类较少，施工期干扰对区域动物的影响较小。加上施工活动的影响可通过相应措施进行处理，因此，施工期对自然保护区动植物资源的影响较小。营运期，自然保护区内无污染物排放，且随着工程建设完成，自然保护区内湿地面积增加，湿地类型增多，水质改善，对自然保护区内动植物资源产生有利影响。

7.1.2 对自然保护区主要保护对象的影响

白洋淀省级自然保护区的保护对象是内陆淡水湿地生态系统，主要保护白洋淀湿地生态环境、水生和陆栖生物群落，特别是要重点保护珍稀濒危野生动、植物物种。

白洋淀自 20 世纪 50 年代以来，由于历史的变迁和社会经济的发展，淀区湿地、水域面积总体呈减少趋势。人工化的早田、水田、荷塘和鱼塘增多，湿地受到严重分割；人工种养产生了大量的农业污染；密布的围堤围埝阻断了水系，严重影响了区域的水动力条件。本工程任务是恢复淀区水动力条件、湿地生态系统和白洋淀湿地特色景观风貌，兼顾淀区自净和水质提升功能。因此本工程有利于保护区湿地生态系统的恢复。
保护区有国家一级重点保护鸟类 4 种，即丹顶鹤、白鹤、大鸨、东方白鹳；国家二级重点保护鸟类有白鹮、白额雁、蓑羽鹤、灰鹤、大天鹅、鹊鹞、长耳鸮等 26 种。保护区重点保护湿地鸟类、大鸨多为旅鸟，往返越冬地，繁殖地时途径保护区，停留时间短且数量较少。根据现场及访问调查，工程区人为干扰较大，未发现丹顶鹤、白鹤、东方白鹳等湿地重点保护鸟类，且工程施工期主要为 6 月-10 月，避开湿地鸟类的越冬期及迁徙经过项目区的时间，因此，工程建设期对湿地保护鸟类影响较小。工程施工结束后，随着淀区水质改善，湿地生境多样性的提升，有利于吸引湿地鸟类。鹊鹞、长耳鸮等猛禽活动范围广，保护区面积较大，附近相似生境较多，工程对其活动影响有限。总体而言，项目实施对保护区重点保护野生动植物影响较小。

7.1.3 对自然保护区结构和功能的影响

本项目虽然占用保护区范围，但占地均为临时占地，通过实施水系疏导、内源污染净化、健康湿地（湿地生境营建、动植物恢复）、智慧湿地等，改善水动力条件，控制内源污染负荷，提升湿地水质，丰富湿地生境。施工完成后原本耕地、荷塘营造成仿自然的沟壕湿地、季节性草本沼泽湿地、湖泊湿地等湿地景观，增加了保护区内湿地面积及湿地类型，改善水质，提高了湿地生态系统质量。因此，对自然保护区的结构为有利影响。

白洋淀省级自然保护区属于自然生态系统类的内陆湿地和水域生态系统类自然保护区。虽然工程施工短期内会使得施工区一定范围内的水质变差，进而影响湿地植物的栖息和生长；施工噪声、震动和水质变差会迫使湿地动物远离施工区，同时增加了湿地动物的生存压力。对重要湿地的保护湿地鸟类的功能有一定影响，但这些影响是暂时的，并不会对自然保护区内的物种多样性产生影响。藻苲淀属于白洋淀西大门，是白洋淀常年三条有水入淀河流之一府河的入淀区域，占白洋淀总面积的 1/7。由于藻苲淀主要入淀河流（萍河、瀑河、漕河、府河）来水水量少，入淀河流水质污染严重，淀区围垦造田及区域生态景观破碎化严重等诸多因素影响，造成藻苲淀区域污染严重、水动力不足、生境退化，物种多样性急剧降低等生态环境问题，使其成为白洋淀生态环境退化严重区域，严重影响白洋淀的生态功能。藻苲淀退耕还淀生态湿地工程主要是通过退耕还淀还湿，恢复淀区水动力条件和湿地生态系统，兼顾淀区自净和水质提升功能，进行生态恢复，对自然保护区功能为有利影响。
7.2 自然保护区保护措施

就工程建设直接影响的自然保护区提出保护措施，其中工程直接影响的自然保护区保护措施主要包括：合理安排施工组织、优化施工平面布置、加强施工人员宣传教育、合理设置生态警示牌、实行施工生态巡视制度等。

（1）优化施工布置

尽量减少自然保护区的扰动，核心区与缓冲区禁止布置施工临时设施与排放污水；施工期间及时遮盖，并控制运输车辆的时速，减少扬尘；对施工机械和运输车辆进行维护和保养，控制噪声。

根据目前施工布置，土方没有外运，均工程内利用，堆土需采用防渗、拦挡、排水、苫盖等措施。

（2）合理安排施工组织

尽量缩短施工工期，明令禁止夜间施工。加快动植物恢复的实施，并监测恢复效果，动植物恢复方案根据实际情况进行调整。

（2）加强施工宣传和警示

以公告、宣传单、板报和会议等形式，加强对自然保护区内施工人员环境保护宣传教育。施工期间，在施工人员活动较集中的区域分别设置生态警示牌，防止破坏湿地生境和捕杀野生动物的事件发生。

（3）合理设置生态警示牌

施工期间，在施工人员活动较集中的区域分别设置生态警示牌。生态警示牌应以示意图形式标明施工范围，明确施工人员活动范围，禁止施工人员越界施工占地，防止破坏湿地生境和捕杀野生动物的事件发生。

（4）实行施工生态巡视制度

施工期间聘请具有鸟类、两栖、爬行等动物保护专业知识的人员在自然保护区内进行跟踪观察，通过降低施工强度或暂停施工等减少对重要保护动物的伤害，把对重点保护动物的影响控制到最低限度。

8 水产种质资源保护区影响评价及防护措施

8.1 水产种质资源保护区影响评价

8.1.1 对水产种质资源保护区结构和功能的影响

本工程不涉及水产种质资源保护区核心区，占用非养殖区面积 226.7hm²。
均为临时占地。目前区域多为人工荷塘，虽然工程施工区将对区域水生生物造成一定不利影响，但施工结束后，区域水质将有所改善，另外将进行湿地生境营造、动植物恢复等工程。人为干扰程度较大的荷塘将恢复成不同类型的湿地，因此工程对保护区结构和功能影响较小。

8.1.2 对水产种质资源保护区主要保护对象的影响

水产种质资源保护区主要保护对象为青虾、黄颡鱼、乌鳢、鳜鱼，其他保护物种包括鳖、团头鲂、田螺、中华绒螯蟹等。本工程不占用保护区核心区，涉及水产种质资源保护区非养殖区，对保护区主要保护对象影响主要有施工活动中产生的悬浮物、噪声、废水、施工机械的直接伤害等对鱼类产生的不利影响。

二施工区抽水后施工及三施工区水中施工，涉水工程将造成区域悬浮物浓度增加，含油废水直接进入水体，会影响藻絮沉淀水质，对水生生物生境造成不利影响。反铲挖机、推土机和自卸汽车等，在施工过程中产生的噪声对藻絮沉淀的鱼类产生一定影响。

施工时间为第一年 7 月 5 日至第一年 10 月 30 日，避开了鱼类主要繁殖期 3-6 月，对鱼类繁殖影响较小。另外一施工区涉及水产种质资源保护非养殖区面积相对较大，该施工区选择干旱时施工，一定程度上减少了施工期对区域水生生物的影响。

8.2 水产种质资源保护区防护措施

（1）优化工程布置，二施工区尽量减少抽排水区域，三施工区水中作业，施工区域周围设置临时挡水设施，减少工程区域水体与周围水体的连通性。

（2）划定施工界限，施工活动严格控制在施工区域内。

（3）施工过程中收集到的鱼类进行转移等措施以减少对鱼类资源的损失。

（4）加强设备维护与保养，减少施工噪声及含油废水不慎流入水体。

（5）加强施工期管理，避免生活污水直接排入水体；严禁施工人员捕捞。

（6）本工程将对水生生物进行恢复，运行期需加强监测，对水生生物恢复物种及恢复效果进行评估。

9 白洋淀省级风景名胜区影响评价及防护措施

本工程拟在藻絮沉淀湖泊湿地进行湖泊湿地荷花抽稀及深泓开挖；草本滩涂湿地区打断部分围坝围埝，滩涂水陆交错带依据水深条件种植香蒲、菰等，并
沿岸布置苔草、纸莎草等湿生草本，滩涂周边水域配置浮叶植物形成特色浮叶植物群；种植芦苇，形成苇海台田景观。在沟壕湿地区修整水道、适度拓宽沟壕等，形成台田与水道相间的廊道景观；对原有荷塘抽稀，形成较大规模的开敞水面，防止荷花连片生长；深泓边缘搭配浮叶植物；水下配置沉水植物，构建水下森林生态系统生态景观，将增强该景区“苇海荷风”的景观特征。

10 环境保护管理与监测计划

10.1 环境保护管理

10.1.1 环境保护管理目标

通过实施环境保护管理，做到项目施工期和营运期对项目涉及区域的水环境、生态环境、声环境以及环境空气量的负面影响减小到相应法规和标准限值要求之内，使项目实施的经济效益和环境效益得以协调、持续和稳定发展。

10.1.2 环境保护管理体系

在项目立项到营运期间，需做好环境保护工作，各设计部门及施工部门本着保护环境的态度开展工作，具体情况见下表。

<table>
<thead>
<tr>
<th>阶段</th>
<th>环境保护内容</th>
<th>环境保护措施执行单位</th>
<th>环境保护管理部门</th>
</tr>
</thead>
<tbody>
<tr>
<td>工程可行性研究</td>
<td>环境影响评价</td>
<td>评价单位</td>
<td>安新县环保局</td>
</tr>
<tr>
<td>设计期</td>
<td>招投标设计中的环境保护设计</td>
<td>设计单位</td>
<td>安新县环保局</td>
</tr>
<tr>
<td>施工期</td>
<td>施工图环保设计，环境监理、环境监测、实施施工环保措施，处理突发性环境问题</td>
<td>建设单位，监理与监测单位、承包商</td>
<td>安新县环保局</td>
</tr>
<tr>
<td>营运期</td>
<td>环境监测及管理、组织环保验收</td>
<td>建设单位、监测单位</td>
<td>安新县环保局</td>
</tr>
</tbody>
</table>

10.1.3 环境保护管理职责

（1）建设单位环境保护机构

①接到施工图文件后，应依据环境影响报告书及批复意见，对环境保护措施进行复核。复核内容包括环保设计、环保措施和环保要求是否执行了批复意见的有关内容和原则，是否违反了国家和地方的有关法律、法规、政策及有关强制性技术标准，是否具有可操作性。

②根据项目所处的环境特征和工程特点，依据环境影响报告书及批复意见，编写施工环保宣传材料，开展有关法律、法规及环保知识的宣传教育。

③与施工单位签署有明确环保管理要求和环保目标的责任书，开工前参与审查施工单位的施工组织方案，审查内容包括施工工序、减缓对环境影响的管理措施及恢复时限等。

④本项目环境影响主要在施工期，环境保护职责由建设单位负责，项目施工
过程中，应与施工单位订立施工管理责任制，在施工期间不得往周围绿地丢弃建筑材料。施工期生活污水严禁未经处理排入水体，按标准控制施工噪声，尤其是夜间噪声应严格控制，根据本评价报告中提出的各项环保工程措施与对策建议，与施工单位签订环保措施责任状，尽可能减轻施工期间的水土流失、植被破坏等，制定本工程施工期水、气、声监测计划，并组织安排具体实施，负责施工场地的环境保护及卫生工作，做到垃圾及时清运，并尽量做到垃圾分类收集处置。

(5)监督检查环保工程、环保措施和要求的落实情况，保证各项工程施工按“三同时”的原则执行，当出现重大环境问题或纠纷时，积极组织力量协调，并协助各施工单位处理好与地方环保部门、公众及利益相关各方的关系。

（2）环境监理单位

确保批准的环境影响报告书中各项环保措施的实施，把工程建设引起的环境影响控制在国家法律、法规、标准规定的范围内。

①督促施工单位制定健全的环境保护管理组织体系和管理办法，检查环保措施及管理要求的执行情况和记录。

②审查施工单位的施工组织设计，对环境保护工程严把质量关，对不符合环保要求者不予计量和支付签证。

③向建设单位提交环境监理月报、季报等监理报告。

（3）施工单位

参与工程建设的各有关施工单位内部应视具体情况，建立相应的环境保护机构，或指定专门人员负责本单位施工过程中的环境保护工作。

①工程指挥部主要领导全面负责环保工作，工程项目部根据管段工程特点和环境特征，制定完善的环境保护计划和管理办法等规章制度，明确施工工艺、施工工序、环境管理措施等。

②根据标段的环境特征和工程特点，筛选出对环境可能产生较大影响的因素，编制施工组织方案，经建设单位工程指挥部和环境监理审核后实施，工程活动严格控制在批准的红线内进行。

③在进场施工十五日前向工程所在地环境保护行政主管部门申报工程的项目名称、施工场所、期限和使用的主要机具、可能产生的环境噪声值以及所采取的环境噪声污染防治措施等情况。

④配合建设单位环境保护机构、环境监理，接受地方各级环保部门的检查。
10.2 环境监理

10.2.1 目的和任务

环境监理是对目前建设项目环境管理制度的完善和补充，是“环境影响评价”制度和“三同时”制度的具体化。它是在项目环境影响评价中根据项目可能出现的环境影响和周围环境要求，提出项目实施过程和项目实施后运行过程中的环境监测、影响审查的具体要求和控制环境污染的操作程序，确保工程在施工期和施工结束后的环保措施得到落实。

环境监理是工程监理的重要组成部分，应贯穿工程全过程。环境监理工作的主要目的是落实环境影响报告书中所提出的各项环保措施，将工程施工活动产生的不利影响降低到最低程度。

环境监理工程师受业主的委托，在工程建设过程中，对工程环境保护工作进行监督、检查、管理，其任务包括：

①质量控制：按照国家或地方环境标准和招标文件中的环境保护条款，在工程施工期间，通过现场监督等工作，监理施工单位履行合同环境条款，防止或减轻生态破坏和水土流失，保护人群健康，将工程对地表水环境、环境空气、噪声的污染控制在环境标准允许范围内，并及时处理工程施工中出现的环境问题。

②信息管理：及时了解和收集掌握施工区各类信息，并对信息进行分类，反馈、处理和储存管理，便于监理决策和协调工程各参建方的环境保护工作，及时掌握工程区环境状况，解决施工过程中造成的环境纠纷，对施工单位的环境月报、季报进行审核，提出审查、修改意见。

③组织协调：配合当地环保部门，对环境工程建设质量、施工进度、投资的合理使用、环保设施运行等进行监督管理，确保各项措施落实到实处，发挥实效。

10.2.2 环境监理范围及职责

（1）环境监理范围

①临时施工生产区：主要包括机械汽车停放场、临时施工区及其周边等区域；
②施工营地：包括施工区及其周边区域；
③施工现场及周边区域。

（2）岗位职责

①贯彻国家和地方环境保护法律、法规、政策和规章，依法对监理范围内施工单位执行环境保护法规的情况进行现场监督、检查和处理。
②从招投标入手，参加投标单位资格审查，审查投标单位对环境条款的效应。
③审查施工组织单位的施工组织设计、施工技术方案和施工进度计划能否满足本工程环境保护要求，必要时提出修改意见。
④工程质量认可需包括环境质量认可，工程的验收凡与环境保护有关的内容需有环境监理工程师参加，并签字认可。
⑤进行环境保护的宣传、教育和环境科学技术的普及工作，增强所有施工人员的环境保护意识。
⑥对施工迹地的恢复，依据环境保护要求进行监督、检查和验收。

10.2.3 工作内容
① 水质保护
检查废水收集处理和达标排放情况，检查含油废水的达标排放情况，检查施工区污水处理设施运行情况，确保施工结束后立即将各种施工机械撤出相应区段；另外要定期对项目区水体进行监测，确保废水满足污水处理厂的进水水质要求。
② 大气环境保护
监督施工单位在施工过程中加强机械设备的维修和保养，减少运行噪声，为保护自然保护区重点保护动物和动物繁殖季节应要求施工单位合理安排施工时间。
③ 噪声防护
监督施工单位在施工过程中加强机械设备的维修和保养，减少运行噪声，为保护自然保护区重点保护动物和动物繁殖季节应要求施工单位合理安排施工时间。
④ 固体废物处理
检查施工区生活垃圾的处理情况，监督施工单位处置好余余的材料，确保现场移交时清洁整齐：确保淤泥及弃土每日清理，监督运输车辆的防水垫层的铺设情况。
⑤ 生态环境
检查施工区域内是否设置警示牌，其数量是否符合环保措施中所要求的数量；在施工过程中加强施工机械不能越界施工的监督管理，并杜绝施工人员猎鸟捕鱼；协助制定重点保护野生动物保护应急预案，并在工作中参与协调林业、水利、环保等部门处理相关环境问题；监督检查施工迹地是否采取相应的水土保持措施；加强区内污染源治理，避免水质污染造成的水生生态破坏。
10.3 环境监测计划和要求

10.3.1 环境监测目的与原则

通过对藻苇淀退耕还淀生态湿地恢复工程一期环境因子的监测，掌握工程影响范围内各环境因子的变化情况，为及时发现环境问题，并及时采取处理措施提供依据；验证环保措施的实施效果，根据监测结果及时调整环保措施，为工程建设环境建设、监督管理及工程竣工验收提供依据。监测原则如下：

由于本工程建设的不利影响主要发生在施工期间，因此环境监测主要在施工期进行。

结合工程规模与特点，针对本工程环境保护的具体要求，选择与工程影响有关的环境因子作为监测、调查与观测对象，经分析确认与工程影响无关的环境因子则不作专门的监测。

监测成果应能及时、全面和系统地反映施工期的环境变化情况，监测断面与观测点的设置能对环境因子起到控制作用，满足相应专业的技术要求。

10.3.2 施工期环境监测

10.3.2.1 生态监测

1）陆生生态监测

（1）监测项目

陆生植物：种类及组成、主要植被分布以及变化情况；外来入侵种的入侵情况；健康湿地工程植物恢复效果等。

陆生动物：种类、生态类群、分布和季节动态变化；重点保护野生动物的种类、数量、分布及生长情况。

（2）监测范围和方法

评价区内共布设 4 处陆生监测点，分别在沟壕湿地区、季节性草本沼泽区、草本滩涂湿地区和湖泊湿地区各设置 1 个监测点位，陆生生态监测点位分布见附图 8。

在各点位根据陆生生物组成设置固定样线 2〜3 条，根据各样线群落面积确定设置的样地数量，统计兽类、鸟类、两栖类、爬行类的物种出现率。

根据《生物多样性观测技术导则 两栖动物》、《生物多样性观测技术导则 陆生哺乳动物》、《生物多样性观测技术导则 爬行动物》、《生物多样性观测技术导
则鸟类》等相关要求进行监测。

（2）监测时间

共4次，施工中期进行1次监测；工程运营1年、3年、5年各进行1次监测。植物监测以5至8月为最佳；两栖爬行类监测时间为3到10月；鸟类每次监测分为春秋两季，春季为3至5月、秋季为9至11月，监测时间为晨昏期间。应保证每次监测时间一致。

2) 水生生态监测

建设期和运行期前在施工河段范围内进行浮游生物、底栖动物、水生维管束植物、鱼类种群动态等进行监测，通过连续监测，统计分析该江段水生生物和鱼类种类组成、资源量变化趋势，分析其变化原因，对本项目的生态环境影响进行后评价。

（1）监测内容与监测要素：

① 水生生物监测：水体理化性质、浮游植物、浮游动物、底栖动物等水生生物的种群结构、生物量及分布情况；鱼类种类组成（鱼类区系）、种群结构、资源量的时空分布、鱼类三场等。

② 水质监测：SS、水体理化性质（主要为N、P、溶解氧、pH）等。

（2）监测断面

① 水生生态监测点：与本次水生调查点位一致。

② 水质监测点：点位布置同水生生态监测点。

（3）监测时段

① 水生生物监测：每年春、夏、秋、冬四季开展4次水生生物监测，施工期监测1年；运营期连续监测3年，共监测20次。

② 水质监测：每年春、夏、秋、冬四季开展4次水生生物监测，施工期监测1年；运营期连续监测3年，共监测20次。

10.3.2.2 环境空气

监测点：在本项目施工范围距离居民点最近的边界处，设置2-3个监测点。

监测因子：TSP、H₂S、NH₃、NO₂、PM₁₀、PM₂.₅、CO

频次：施工高峰期和非高峰期各监测一次。

10.3.2.3 环境噪声

监测点：在本项目施工范围距离居民点最近的边界处，设置2-3个监测点。
监测因子：等效 A 声级
频次：施工高峰期和非高峰期各监测一次，分别测昼间和夜间噪声。

10.3.2.4 地表水监测
监测点：与现状监测点位一致：工程区内部 13 个独立水域、工程区内部 4 条主要沟渠，各设置一个断面。
监测因子：pH，悬浮物，溶解氧，高锰酸盐指数，CODCr，BOD5，氨氮，TN，TP，砷，汞，六价铬，粪大肠菌群共 13 项指标。
频次：施工期每季度监测一次、运行期每年丰、平、枯各监测一次。

10.3.2.5 土壤监测
监测点：在工程区底泥干化场周边进行土壤取样分析。
监测因子：包括有机质含量，总氮含量，总磷含量，铜，锌，铅，镉，总汞，总砷，全硒，镍，总铬，氟化物，氯离子，硫酸根离子，有机磷农药，共 15 项。
监测频率：施工期和运行期各 1 次。

10.3.2.6 排水口监测
监测点：超磁分离一体化设备排水口
监测因子：SS，COD，NH3-N，TN，TP
频次：每周一次。

10.4 工程竣工环保验收
本项目环保竣工验收内容见表 10.4.1-1。
表 10.4.1-1 环保措施“三同时”验收一览表

<table>
<thead>
<tr>
<th>项目</th>
<th>污染源</th>
<th>污染因子</th>
<th>治理措施</th>
<th>处理效果</th>
<th>验收标准或其它说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>废水</td>
<td>施工废水</td>
<td>COD、SS、石油类等</td>
<td>设置沉淀池、隔油池</td>
<td>处理后回用</td>
<td>保护区核心区与缓冲区禁止排放</td>
</tr>
<tr>
<td></td>
<td>施工生活污水</td>
<td>COD、SS、氨氮等</td>
<td>设置防渗化粪池，化粪池定期清掏，外运作农肥，施工作业区移动式卫生厕所，委托当地环卫部门定期清理</td>
<td>不外排</td>
<td>保护区核心区与缓冲区禁止排放</td>
</tr>
<tr>
<td>废气</td>
<td>施工场地、机械运输</td>
<td>TSP</td>
<td>施工场地设置标志牌；场地出入口设置车辆冲洗台和冲洗设施；散装物料密闭贮存或覆盖，密闭运输；施工场地及道路洒水抑尘</td>
<td>PM_{10}，监测点浓度限值 80μg/m(^3)，达标判定依据 2次/天</td>
<td>《施工场地扬尘排放标准》（DB13/2934-2019）</td>
</tr>
<tr>
<td></td>
<td>机械车辆</td>
<td>燃油废气</td>
<td>选用低能耗、低污染排放的施工机械和车辆；加强机械和车辆的管理和维护</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>施工营地食堂</td>
<td>油烟</td>
<td>施工营地食堂设油烟净化器</td>
<td><2.0mg/m(^3)</td>
<td>《饮食业油烟排放标准》（GB18483-2001）</td>
</tr>
<tr>
<td>项目</td>
<td>污染源</td>
<td>污染因子</td>
<td>治理措施</td>
<td>处理效果</td>
<td>验收标准或其它说明</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>----------</td>
<td>---</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>噪声</td>
<td>施工机械、运输车辆</td>
<td>Leq(A)</td>
<td>合理安排运输路段、时间，加强机械设备的维修和保养</td>
<td>场界达标</td>
<td>《建筑施工场界环境噪声排放标准》（GB12523-2011）相关限值</td>
</tr>
<tr>
<td>固体废物</td>
<td>施工过程</td>
<td>施工弃渣</td>
<td>工程区域内自身挖填平衡</td>
<td>不外排</td>
<td>《一般工业固体废物贮存、处置场污染控制标准》（GB18599-2001）及其修改单</td>
</tr>
<tr>
<td></td>
<td>生活垃圾</td>
<td>生活垃圾</td>
<td>垃圾收集点、交有环卫部门处置</td>
<td></td>
<td></td>
</tr>
<tr>
<td>水生生态</td>
<td>水生生态</td>
<td>水生生态</td>
<td>水生生物的保护与补偿措施</td>
<td></td>
<td>严格按照监测计划落实和水产保护措施</td>
</tr>
<tr>
<td>陆域生态</td>
<td>陆生动物</td>
<td>生态影响的避让与减缓措施、湿地修复、施工时序优化措施</td>
<td></td>
<td>加强施工管理，提高施工人员环保意识</td>
<td></td>
</tr>
<tr>
<td></td>
<td>陆生植物</td>
<td></td>
<td>乔灌草植物恢复、施工迹地恢复和水土保持</td>
<td>生态修复和生态补偿</td>
<td></td>
</tr>
<tr>
<td>水土流失</td>
<td>工程防护+绿化措施+植被恢复措施</td>
<td></td>
<td></td>
<td>防止施工期水土流失</td>
<td></td>
</tr>
<tr>
<td>环境管理与监督</td>
<td>施工期各项环保措施实施的合同条款，环境管理检查记录，施工期环境监理与环境整改等报告</td>
<td></td>
<td>反映环境污染、污染物排放达标情况的环境监测与环境质量、污染物排放达标情况报告</td>
<td></td>
<td></td>
</tr>
<tr>
<td>环境监测</td>
<td>水、气、声、生态监测，施工期与工程竣工环境监测报告</td>
<td></td>
<td>环境质量、污染物排放达标情况</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
11 环境、经济损益分析

11.1 环保投资

根据环境保护措施设计，除去主体工程中已有的环保措施投资，本项目拟新增环境保护专项投资 446.78 万元，各项环保投资详见表 11.1-1。

<table>
<thead>
<tr>
<th>序号</th>
<th>工程费用和名称</th>
<th>单位</th>
<th>数量</th>
<th>单价(元)</th>
<th>合计(万元)</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>第Ⅰ部分 环境监测措施</td>
<td></td>
<td></td>
<td></td>
<td>189.60</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>地表水监测</td>
<td>年</td>
<td>4</td>
<td>70000</td>
<td>28.00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>施工废水监测</td>
<td>点. 期</td>
<td>48</td>
<td>1000</td>
<td>4.80</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>环境空气质量监测</td>
<td>点. 期</td>
<td>6</td>
<td>6000</td>
<td>3.60</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>噪声监测</td>
<td>点. 期</td>
<td>12</td>
<td>1000</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>陆生生态监测</td>
<td>年</td>
<td>4</td>
<td>80000</td>
<td>32.00</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>水生生态监测</td>
<td>年</td>
<td>4</td>
<td>150000</td>
<td>60.00</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>土壤监测</td>
<td>点. 期</td>
<td>20</td>
<td>5000</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>营运期的跟踪监测</td>
<td>项目</td>
<td>1</td>
<td>500000</td>
<td>50.00</td>
<td>地表水、底泥、水生生态</td>
</tr>
<tr>
<td></td>
<td>第Ⅱ部分 环境保护临时措施</td>
<td></td>
<td></td>
<td></td>
<td>61.5</td>
<td></td>
</tr>
<tr>
<td>一</td>
<td>噪声防治</td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>限速警示牌</td>
<td>个</td>
<td>10</td>
<td>500</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>禁鸣警示牌</td>
<td>个</td>
<td>10</td>
<td>500</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>二</td>
<td>固体废物处理</td>
<td></td>
<td></td>
<td></td>
<td>8.00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>垃圾桶</td>
<td>个</td>
<td>10</td>
<td>800</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>垃圾清运</td>
<td>月</td>
<td>12</td>
<td>6000</td>
<td>7.20</td>
<td></td>
</tr>
<tr>
<td>三</td>
<td>环境空气质量控制</td>
<td></td>
<td></td>
<td></td>
<td>24.00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>洒水降尘</td>
<td>月</td>
<td>12</td>
<td>20000</td>
<td>24.00</td>
<td></td>
</tr>
<tr>
<td>序号</td>
<td>工程费用和名称</td>
<td>单位</td>
<td>数量</td>
<td>单价(元)</td>
<td>合计(万)元</td>
<td>备 注</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>四</td>
<td>废水处理</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>沉淀池</td>
<td>套</td>
<td>1</td>
<td>50000</td>
<td>5.00</td>
<td>超磁化处理计入主体工程</td>
</tr>
<tr>
<td>2</td>
<td>生活污水收集池</td>
<td>处</td>
<td>1</td>
<td>5000</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>移动式卫生厕所</td>
<td>套</td>
<td>3</td>
<td>10000</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>五</td>
<td>水生生态防护</td>
<td>项</td>
<td>1</td>
<td>200000</td>
<td>20.0</td>
<td>鱼类资源补偿费用计入主体工程</td>
</tr>
</tbody>
</table>

第Ⅰ部分～第Ⅱ部分合计 251.1

第Ⅲ部分

<table>
<thead>
<tr>
<th>段落</th>
<th>独立费用</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>一</td>
<td>建设管理费</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>环境管理费</td>
<td>5%</td>
<td>12.56</td>
<td></td>
<td>工程费用的5%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>环保宣传及技术培训</td>
<td>5000</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>二</td>
<td>环境监理费</td>
<td>月</td>
<td>12</td>
<td>10000</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>三</td>
<td>科研勘测设计费</td>
<td></td>
<td></td>
<td>130.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>环境影响评价费</td>
<td></td>
<td>70.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>竣工环保验收费</td>
<td></td>
<td>60.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

第Ⅰ部分～第Ⅲ部分合计 406.16

<table>
<thead>
<tr>
<th>段落</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>基本预备费</td>
<td>10%</td>
<td>40.62</td>
<td></td>
<td></td>
<td>第Ⅰ部分～第Ⅲ部分之和 10%</td>
<td></td>
</tr>
</tbody>
</table>

环境保护专项投资 446.78

11.2 项目环境经济损益分析

11.2.1 经济效益分析

1) 本项目的实施，可以改善项目区藻类的生态环境，可以带动休闲旅游
业的发展，能满足不同层次消费者对生态休闲旅游的社会需求，并为地方增加财政收入。

2) 项目区整治后，环境优美，有利于提高当地农村居民的生活水平，也有利于改善城镇投资环境，促进小镇经济发展，有利于保持经济持续稳定增长。

3) 工程建设加大资金投入，增加物资需求，可带动相关企业的生产。

4) 工程建设需要劳动力投入，可增加工作岗位，缓解就业压力。

11.2.2 社会效益分析

a) 对所在地居民生活质量的影响

本项目实施阶段，对周边居民影响不大，完工后将为创建优美、舒适、健康、清洁、和谐、人与自然和谐相处的环境起到积极作用，从而有利于保障人民身体健康，提高人民生活质量。

b) 对所在地居民就业的影响

项目建设既能对项目实施阶段带来就业岗位，又能通过招商引资带动更多的就业岗位，因此能够带来区域及周边城镇农村劳动力转移的加快、社会消费需求的增加、服务行业的繁荣、城市化步伐的加快等。

11.2.3 环境益损分析

（1）正面效益

以《河北雄安新区总体规划（2018-2035 年）》和《白洋淀生态环境治理和保护规划（2018-2035 年）》为指导，对藻苟淀实施水系疏浚、内源污染净化、健康湿地（生境营造和生态系统构建）和智慧湿地构建，从而改善区域水动力条件、削减污染源、修复生态环境，恢复藻苟淀西部生态屏障功能，再现白洋淀“荷塘苇海”特色湿地胜景。

a) 改善水环境质量

实施藻苟淀退耕还淀生态修复工程，首先削减藻苟淀的内源污染负荷，治理存量污水，做好底泥清理与处置，开展农田表层土壤治理，因地制宜采用多类型湿地水质净化、生态滩涂等生态净化技术，净化荷塘和稻田存量水水质，控制荷塘底泥（农田土壤）氮磷污染释放，实现主要水质指标（COD、NH3-N 和 TP）达到地表水 IV 类标准后排入淀区，保障南刘庄断面水质达标，改善藻苟淀水环境质量。
b) 修复水生态系统

藻苲淀退耕还淀生态修复工程，以自然恢复为主，营造沟濠、草本沼泽、滩涂、湖泊等自然湿地生境，恢复陆生草本植物-挺水植物-沉水植物组成的植物群落及食草型-滤食性-肉食性鱼类群落，构建沟壕湿地、季节性草本沼泽、草本滩涂湿地和湖泊湿地等多元自然湿地，逐步恢复自然湿地生态系统完整性，让生态系统得到休养生息，实现自我修复。

（2）负面损失

施工场地含石油类及悬浮物废水，底泥清淤产生的 SS 和施工扬尘、底泥恶臭和噪声影响在采取有效防治措施后，影响不大。因此，项目施工造成的污染经济损失不明显。

11.3 环境影响经济损益分析结论

综上所述，本项目在施工过程中控制得当，则对水、大气、噪声和生态环境影响造成的环境损失较小，同时本项目为环境改善工程，对藻苲淀水环境和水生生态环境质量、周边的景观价值有比较好的贡献，工程的环境效益远大于环境损失。
12 结论与建议
12.1 结论
12.1.1 项目概况
藻苒淀退耕还淀生态湿地恢复一期工程位于雄安新区安新县境内藻苒淀西部，紧邻府河河口湿地。东部以北何庄村进村道路向西约 500m 为边界，西部以漕家沟为界，北部以主水道为边界（包含主水道），南以府河河道向北约 450m 为边界，总占地面积为 5.4km²。藻苒淀退耕还淀生态湿地恢复工程一期位于雄安新区安新县境内，工程面积为 5.4km²，主要建设内容为沟壕疏通、内源污染净化、水质提升（含地形营造）、湿地生态恢复、智慧湿地等。
水系疏导工程包括新建沟壕 26.12km、拆除围堤围埝 43.49km；内源污染净化工程包括表层土壤治理约 95.45hm²、荷塘清淤 25.88 万 m³、存量污水处理 40.04 万 m³；健康湿地工程包括湿地建设 5.4 km²；智慧湿地工程包括自动水质监测站 1 座、大气自动监测站 1 座、视频监控站 6 座、配套监控管理中心及管理应用平台建设。
12.1.2 区域环境质量现状评价结论
a) 土壤环境
水稻土和潮土是保护区内最主要的土壤类型，也是区内主要的耕作土壤。土壤多带弱碱性，质地以轻壤为主，土体疏松，地下水位较低，水肥气热协调，自然肥力高。2020 年 4 月工程一期范围内土壤监测结果表明，10 个典型地块中有 3 块土壤营养物质释放风险为高风险；6 个典型地块土壤营养物质释放风险为中风险；1 个典型地块土壤营养物质释放风险为轻度风险。主要营养物质释放风险因子为总氮。
b) 空气环境
根据 2018 年安新县环境空气例行监测数据，判定区域环境空气质量不达标；项目所在区域为不达标区。
c) 地表水环境
工程区范围内，13 个独立水域中有 2 块水质为劣 V 类（含水稻田）；5 块水域水质为 V 类；5 块水域的水质为 IV 类；1 块水域的水质为 III 类。
水质（湖库）为评价标准，主要超标水质指标为总磷，最大超标倍数为 1.5 倍。工程区内 4 条主要沟渠的水质监测数据表明，其中 1 条沟渠水质劣Ⅴ类，北部主水道为 V 类，其余2条沟渠水质为Ⅳ类。以地表水 IV 类水质（湖、库）为评价标准，主要超标水质指标为总磷，最大超标倍数为 4.8 倍。

d) 地下水环境

安新县地下水资源比较丰富，水质良好，水质为重碳酸钙镁钠型，pH 值范围 7.0～8.2，矿化度 0.32～5.51g/L，总硬度 11～22。一般地下水埋深 2～4m，部分区域 1m 以下即可见水，由于近年干旱，水位有所下降，多年平均开采量为 0.322 亿 m³。工程区地表水主要分布于区内地沟及湖泊。河水涨落与大气降水补给有关，地下水埋深 1m～2m。场区地下水主要类型是上层滞水和松散土层孔隙水。上层滞水由大气降水径流补给以及河水的侧向补给，水量较小，上层滞水水位不连续，呈囊状分布于表土层中，水位随排泄作用和季节变化而变化。松散土层孔隙水主要分布在第四系松散堆积物内，一般埋深 0.4m～1.22m，主要接受大气降水和地表水的补给。场区粉质黏和粉土均为弱透水性

e) 声环境

根据项目周边的声环境在线监测情况，昼间声环境质量均达到《声环境质量标准》（GB3096-2008）2 类标准，夜间超标。

f) 生态环境

评价区总面积为 1983.50hm²，土地利用类型以水域和耕地为主；生态系统可分为自然的森林生态系统、草地生态系统、湿地生态系统及半自然的农田生态系统和人工的城镇/村落生态系统。其中森林生态系统面积约为 117.69hm²，草地生态系统面积约为 243.18hm²，湿地生态系统面积约为 706.18hm²，农田生态系统面积约为 726.47hm²。城镇/村落生态系统面积约为 189.98hm²；自然植被可划分为 2 个植被型组、4 个植被型、14 个群系；陆生脊椎动物有 4 纲 21 目 43 科 76 种；其中东洋种 9 种，古北种 37 种，广布种 30 种；评价区有国家Ⅰ级重点保护野生动物 1 种，有国家Ⅱ级重点保护野生动物 3 种，河北省省级重点保护野生动物 15 种；水生生物共检出浮游藻类植物 5 门 39 种（属），其中绿藻门种类最多，17种，其次是硅藻门 4 门 22 种，其中轮虫种类最多，为 9 种，其次为原生动物 5 种。底栖动物 18 种，其中环节动物门 2 种、
软体动物门 12 种，节肢动物门 4 种。鱼类有 4 目 10 科 19 种，未发现国家级、省级重点保护鱼类。

g) 环境敏感区现状

白洋淀省级自然保护区总面积为 296.96km²，其中核心区分区面积 94.40 km²，缓冲区面积 53.68 km²，实验室面积 148.88 km²，保护对象为内陆淡水湿地生态系统，主要保护白洋淀湿地生态环境、水生和陆栖生物群落，特别是要保护珍稀濒危野生动、植物物种。本项目位于白洋淀自然保护区藻苇淀片区，占用保护区面积 540 hm²，涉及保护区核心区、缓冲区、实验区。

白洋淀国家级水产种质资源保护区总面积 8144hm²，主要保护对象是青虾、黄颡鱼、乌鳢、鳜鱼，其他保护物种包括鳖、团头鲂、田螺、中华绒螯蟹等。本项目涉及水产种质资源保护区非养殖区，占用保护区面积 113.57 hm²。

白洋淀今有“北地西湖”，含有“华北明珠”之誉，是河北省省级风景名胜区，是国家 AAAAA 级旅游景区，是河北第一大内陆湖，总面积 366km²，南距石家庄 189km，北距北京 162km，东距天津 155km，是京津冀腹地。白洋淀风景名胜区自然旅游资源与人文旅游资源兼备，近年来，举办了数次荷花节，开辟了淀家乐、放荷灯、鱼鹰捕鱼表演等民俗风情活动项目，丰富了白洋淀风景游、生态游、民俗游与文化游的内涵。

f) 环境保护目标

评价区域内生态环境保护目标为白洋淀省级自然保护区、白洋淀国家级水产种质资源保护区和白洋淀省级风景名胜区；大气和声环境保护目标 200 范围无敏感保护目标；地表水环境保护目标为藻苇淀范围内水系水质不降低，南刘庄国控断面水质控制在 IV 类标准；社会环境保护目标为用地范围南面外周的“古秋风台”石碑。

12.1.3 环境影响分析结论

a) 土壤环境

本工程用地范围开挖表土 20cm，底泥疏浚为表层以下约 30cm。清除的土壤用于本工程用地范围内生态造型，且根据用地范围土壤与底泥的检测结果分为高、中、低风险区和无风险区，对于高风险与中风险土壤与底泥，将其上覆盖水抽到水质类别相同的独立水域（IV 及 IV 类以上水质直接排入淀区）；底泥通
过干式施工方式进行清理，清理的底泥在一施工区进行地形营造，内部消纳底泥方量，控制底泥氮磷释放。

b) 空气环境

施工期大气污染物主要为施工扬尘、燃油机械废气和运输车辆汽车尾气、淤泥恶臭和施工营地食堂油烟等，若不采取环保措施，将会对区域大气产生一定影响。

项目施工采取洒水、冲洗等一系列降尘措施，扬尘量将减少；燃油机械、运输车辆尾气对环境空气影响不大；对于清淤恶臭需加快施工进程，对堆泥地形营造处及时进行植被恢复，减少恶臭影响的持续时间和强度，对周边居民点影响不大。施工营区食堂设置油烟净化装置，油烟经处理后达标排放，基本不会对区域大气产生影响。

c) 地表水环境

施工期对地表水环境的影响主要为含泥废水、含油废水、施工生活污水和底泥清淤对水质的影响。含泥废水经过沉淀池处理后，上清液回用于施工或就近排入工区周边水沟；车辆冲洗废水采用小型洗车池、沉淀池对含油废水进行处理；工程施工期生活污水经化粪池初步处理达标后灌溉附近农田；底泥挖出在防渗漏的土工膜上进行干化处理，待脱水至 60%左右，转运并用土工膜包裹填埋于指定位置，覆土绿化。剩下的余水，采用超磁分离一体化设备处理达标后，优先用于周边工程施工用水及道路绿化、道路洒水降尘等。营运期地表水水质将有小幅度改善。

施工废水要统一收集，设置临时沉淀池，清水回用，严禁向湿地自然保护区核心区与缓冲区内排污。本项目施工人员生活污水采用化粪池与移动式卫生厕所收集处理定期清掏用于周边农地。

d) 地下水环境

本工程所在区域地下受大气降水及淀水补给。本工程施工分三个施工区，第一施工区与第二施工区基本在自然状况下的枯水期内排水排干的干地进行，第三施工区在水下施工。第二施工区的底泥疏浚为表层以下约 30cm，第一施工区与第三施工区的沟壑疏通、荷塘抽稀、围墙围埝拆除施工均在表层以下 30cm 以内，均不会涉及地下含水层，不会对地下水环境水质造成影响。
施工废水均经过超磁一体化设备处理达到地表水环境质量标准 IV 类标准后排至周边实验室现有水沟内。因此，在施工期的对污、废水做到集中收集处理后，不会对地表水与地下水产生影响。对水环境的主要影响是增加水中的 SS, 而底泥中的重金属主要以结合态存在的重金属, 难以转化为离子态进入水体中, 故施工过程对水的影响主要为 SS 浓度急剧增加, 不存在其他污染物的产生, 不会对地下水环境水质造成影响。

d) 声环境

施工区周边 200m 内无居民分布，施工噪声源主要是施工期各类施工机械和运输车辆，在合理布局施工现场、施工作业时间和施工运输车辆的走行路线和走行时间，并选用低噪声的设备和工艺，对振动较大的设备可使用减震机座；加强机械设备的维修和保养，保持施工设备低噪声运行状态。

e) 固体废弃物影响

施工过程中做到土石方平衡，不会产生施工弃渣。固体废弃物影响主要为施工人员产生的生活垃圾。生活垃圾分类收集后交由环卫部门统一处理，基本不会对环境造成影响。

f) 生态环境

1) 生态系统影响

本工程生态评价等级为一级, 评价范围为工程占地区向外扩 1000m 的范围, 评价范围总面积 1983.50hm²。工程临时用地 540 hm², 其中涉及水田 106hm², 旱地 80hm², 荷塘 304hm², 其他 (水塘、围堤) 50hm²。工程建设后, 评价区耕地减少, 水域滩涂湿地面积增加 47.71hm²。工程建设涉及白洋淀湿地省级自然保护区、白洋淀国家级水产种质资源保护区和白洋淀省级风景名胜区。工程占地面积为 540hm², 均为临时占地, 基本不占用森林生态系统。本工程为退耕还淀生态修复工程, 工程建设湿地生境营造、植被恢复工程，工程临时占地对草地生态系统中植被和植物多样性影响较小，且是暂时的。同时，由于动物具有趋利避害行为，施工区域附近还有较多类似生境，工程不会使评价区草地生态系统中动物的种类组成和区系发生改变。水系统等建设将使项目区在水平和垂直空间上形成多层次的湿地景观格局，形成沟壕湿地、季节性草本沼泽湿地、草本滩涂湿地、湖泊湿地等不同湿地类型，改变现有单一的荷塘、耕地景观类型，景观异质性有
所增加。湿地植物作为湿地生态系统的第一性生产力，为湿地动物提供重要的栖息场所，同时也影响着湿地生态系统结构，进而调整优化湿地生物组分，恢复陆生草本植物—挺水植物—沉水植物组成的植物群落及食草型—滤食性—肉食性鱼类群落，逐步恢复自然湿地生态系统完整性，有利于增强湿地生态系统的结构与功能。

2) 重点保护物种与物种多样性影响

评价区内调查到河北省保护野生植物菖蒲 1 处面积约 14.3hm²，但不在工程区域内，距离施工二区东侧的最近距离约 5m，工程建设可以避让防护。

评价区内分布有 1 种国家Ⅰ级重点保护野生陆生脊椎动物大鸨、国家Ⅱ级重点保护野生鸟类 3 种，分别为：黑鸢、白尾鹞和鹊鹞。大鸨一般会主动远离施工区，影响较小。这 3 种鸟类活动范围广，飞翔能力强，受工程影程度有限。

施工期产生的施工噪声和水质变差会迫使湿地动物远离施工区，同时增加了湿地动物的生存压力，对物种的生境有一定影响，但这些影响是暂时的，且生物有主动规避本能，因此施工对物种多样性不会产生大的不利影响。施工结束后随着生境逐渐改善，项目区物种多样性会增强。

3) 水生生物影响

本工程沟壕疏通、深泓开挖和底泥疏浚施工活动对水生生物的影响主要为：(1) 施工导致悬浮物浓度增加与施工机械和车辆冲洗排放的含油废水等水质污染影响；(2) 施工活动直接伤害；(3) 施工机械噪声影响。但成年鱼类会主动回避，影响有限。且由于沟壕疏通在 6-10 月，即第一施工区处于干地状态施工，因此，沟壕疏通施工不会对鱼类带来较大的影响。第二施工区与第三施工区是鱼类适宜的产卵场和索饵场，底泥疏浚与荷塘抽稀和深泓开挖可能会对鱼类产生影响，但施工时间避开了繁殖期 3-6 月，且本报告提出了减缓措施，因而影响可降到最小。

工程实施后水体流通性得到增强，淹没水域面积大幅增加，水质得到净化，经植被修复，人工增殖放流、鱼类生境营造后，鱼类等水生生物资源将得到恢复并得以逐渐丰富。

4) 对自然保护区影响

在保护区内占地工程主要为耕地、荷塘，现状人为干扰较大。受占地影响的植被及物种均为常见类型，占地对区域动植物资源及主要保护对象的影响较小。随着工程建设完成，自然保护区内湿地面积增加，湿地类型增多，水质改善，对
自然保护区内动植物资源产生有利影响。

5）对水产种质资源保护区的影响

工程不涉及水产种质资源保护区核心区，占用非养殖区面积226.7hm²，对保护区主要保护对象的影响主要有施工活动中产生的悬浮物、噪声、废水、施工机械的直接伤害等对鱼类产生的不利影响，报告对此提出了减缓措施。随着工程建设完成，自然保护区内湿地面积增加，湿地类型增多，水质改善，对鱼类种质资源产生有利影响。

6）对白洋淀风景名胜区的影响

工程施工期产生的不利影响主要是施工期1年内影响游客游览环境，建成后会再现“台田苇海”的新景观特征，提升5A级景区的生态旅游价值。

7）生态完整性影响

评价区内耕地减少，耕地拼块的优势度值相应减少，但减少的幅度较小，取而代之营造成不同湿地，水域滩涂优势度值由工程建设前的34.01%上升到48.80%。作为模地的水域滩涂优势度值仍高于其它拼块的优势度值，仍然作为评价区内的模地。由此可见，拟建工程对评价区自然体系的生态景观格局影响不大。工程实施后，耕地等人为干扰程度较大斑块将恢复为不同类型的自然湿地，人为干扰减少，不同湿地异质性增加，有利于提高生态系统的稳定性与完整性。

12.1.4 政策规划符合性分析结论

本工程符合产业政策，符合《河北雄安新区规划纲要》、《河北雄安新区绿色空间专项规划》、《河北省水污染防治工作方案》、《河北省湿地保护条例》、《河北省湿地自然保护区规划（2018-2035年）》、《白洋淀生态环境治理和保护规划（2018-2035年）》、《白洋淀流域治理实施方案（2018-2020年）》（冀政字〔2018〕38号）等规划和法规，符合环境质量底线、资源利用上线、生态保护红线和环境准入清单。

12.1.5 施工组织方案的环境合理性

整个工程区域分为4个功能分区，分别为沟壕湿地区、季节性草本沼泽区、草本滩涂湿地区和湖泊湿地区，征地区从南到北总体分三个施工区：一施工区自然干地施工，二施工区抽水干地施工，三施工区水中作业。

工程功能分区与3个施工区结合土地利用现状与地形、水文条件规划设计，
从环境保护角度分析比较合理。工程区域内自身土方挖填平衡，不外运弃土，施工营地不涉及其核心区与实验区，整个施工区只涉及非养殖区，水下施工基本避开鱼类繁殖期。生活污水采用化粪池处理后外运到周边乡镇回灌农田，不排入淀。因此，本工程施工组织设计方案布置合理。

12.1.6 环境制约因素及解决办法

1) 环境制约因素

工程建设占用白洋淀湿地省级自然保护区核心区226.70 hm²，缓冲区281.01 hm²，实验区32.29 hm²，涉及国家级水产种质资源保护区而非养殖区113.57 hm²，但不涉及其核心区与实验区。

2) 解决办法

该项目属于水生态系统及地下水保护与修复工程，属于生态环境修复与改善项目，应按照《河北省湿地保护条例》，施工前编制湿地保护方案，报送地方职能主管部门批准，施工中接受职能主管部门的技术指导与监督管理，同时严格按照工程设计方案内容进行施工，不得建设其他无关建设内容；施工过程采取严格的生态保护措施，禁止施工人员破坏和捕杀白洋淀自然保护区和水产种质资源保护区的野生动植物、鸟类及鱼类资源，严禁向保护区核心区与缓冲区内排放各类施工污水和施工固废。

12.1.7 综合结论

本工程属于鼓励类的水生态系统及地下水保护与修复工程，符合《河北雄安新区规划纲要》《白洋淀生态环境治理和保护规划(2018—2035年)》要求。工程建设可能的不利环境影响主要表现在施工期，可通过落实本环评报告提出的环境影响减缓措施与环境管理措施得到有效控制；工程建设环境效益和社会效益显著。从环保角度分析，工程建设可行。

12.2 建议

1) 选择有资质、管理严格的施工队伍，提高施工管理水平，严格按照工程设计方案施工，强化施工期环境管理，并抓好施工进度，尽可能的减少施工对环境造成的不利影响。

2) 建设单位在工程建设期要切实落实环境保护管理机构职能，保证机构的政策运转，加强对区域生态环境的保护管理，杜绝破坏生态环境事件的发生；
3) 工程建设中应严格遵循“三同时”制度，及时落实环保投资，确保各项环保措施的实施。